精英家教网 > 初中数学 > 题目详情

已知有一长方形的周长为12,其中一边长为x,另一边长为y.
(1)求y与x的关系式,并求出x的范围;
(2)画出它的图象.

解:(1)根据题意知,y==-x+6,
∵x>0,-x+6>0,
∴0<x<6;

(2)列表:
x06
y60
描点连线,其函数图象如图所示(端点空心).

分析:(1)根据长方形周长求表达式,根据-x+6>0,确定自变量的取值范围;
(2)取两个符合条件的点连线成图,注意自变量的取值范围.
点评:此题考查了一次函数的应用,注意自变量的取值范围,利用解析式得出图象与坐标轴交点坐标是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知有一长方形的周长为12,其中一边长为x,另一边长为y.
(1)求y与x的关系式,并求出x的范围;
(2)画出它的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.

从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!
探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)

探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)

查看答案和解析>>

科目:初中数学 来源:2013届浙江台州豪佳中学八年级(下)第一次月考数学试卷(解析版) 题型:解答题

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,

,只有当a=b时,等号成立.

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值

(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。

设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。

∵m>0, (定值),由以上结论可得:

只有当m=       时,镜框周长有最小值是       

(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

 

查看答案和解析>>

科目:初中数学 来源:浙江省月考题 题型:解答题

阅读理解:对于任意正实数a、b,
≥0,
≥0,
,只有当a=b时,等号成立
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。
∵m>0,(定值),
由以上结论可得:只有当m=       时,镜框周长有最小值是      
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系。

查看答案和解析>>

同步练习册答案