¼ÆËã¶àÏîʽax3+bx2+cx+dµÄֵʱÓÐÒÔÏÂ3ÖÖËã·¨£¬·Ö±ðͳ¼Æ3ÖÖËã·¨Öеij˷¨´ÎÊý£®
¢ÙÖ±½Ó¼ÆË㣺ax3+bx2+cx+dʱ¹²ÓÐ3+2+l=6£¨´Î£©³Ë·¨£»
¢ÚÀûÓÃÒÑÓÐÃÝÔËËã½á¹û£ºx3=x2•x£¬¼ÆËãax3+bx2+cx+dʱ¹²ÓÐ2+2+1=5£¨´Î£©³Ë·¨£»
¢ÛÖðÏîµü´ú£ºax3+bx2+cx+d=[£¨ax+b£©x+c]x+d£¬ÆäÖеÈʽÓÒ¶ËÔËËãÖк¬ÓÐ3´Î³Ë·¨£®
ÇëÎÊ£º£¨1£©·Ö±ðʹÓÃÒÔÉÏ3ÖÖËã·¨£¬Í³¼ÆËãʽa0x10+a1x9+a2x8+¡­+a9x+a10Öг˷¨µÄ´ÎÊý£¬²¢±È½Ï3ÖÖËã·¨µÄÓÅÁÓ£®
£¨2£©¶Ôn´Î¶àÏîʽa0xn+a1xn-1+a2xn-2+¡­+an-1x+an£¨ÆäÖÐa0£¬a1£¬a2£¬¡­£¬anΪϵÊý£¬n£¾1£©£¬·Ö±ðʹÓÃÒÔÉÏ3ÖÖË㷨ͳ¼ÆÆäÖг˷¨µÄ´ÎÊý£¬²¢±È½Ï3ÖÖËã·¨µÄÓÅÁÓ£®
·ÖÎö£º£¨1£©¸ù¾ÝÒÑÖªÌõ¼þ¢ÙÖ±½Ó¼ÆË㣻¢ÚÀûÓÃÒÑÓÐÃÝÔËËã½á¹û£»¢ÛÖðÏîµü´ú£¬·Ö±ðÀûÓÃ3ÖÖÔËËã·½·¨Ö±½ÓÇó³ö¼´¿É£»
£¨2£©ÀûÓã¨1£©ÖÖËã·¨£¬·Ö±ðÔËÓÃ3ÖÖÔËËã·½·¨Ëã³ö¼´¿É£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÒÑÖªÖÐ3ÖÖÔËËã·½·¨Ö±½ÓËã³ö¼´¿É£º
3ÖÖÔËËã·¨µÄ´ÎÊý·Ö±ðΪ£º
¢Ù10+9+8+¡­+2+1=55´Î£»
¢Ú2¡Á9+1=19´Î£»
¢Û10´Î£®

£¨2£©³Ë·¨´ÎÊý·Ö±ðÊÇ£º
¢Ùn+£¨n-1£©+¡­+3+2+1=
n(n+1)
2
£¨´Î£©£»
¢Ú2£¨n-1£©+1=2n-1£¨´Î£©£»
¢Ûn´Î£®
¡à¢ÙÖ±½Ó¼ÆËã·¨¿ÉÒԵóöËùÓÐÏîµÄ×Ü´ÎÊý£»
¢ÚÀûÓÃÒÑÓÐÃÝÔËËã½á¹û·¨Ö»ÊÇ×î¸ßÃݵÄÔËË㣻
¢ÛÖðÏîµü´ú·¨Ö»Äܵóö×î¸ß´ÎÊý£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁËÕûʽµÄ»ìºÏÔËËãÖйæÂÉÐÔÎÊÌâµÄ×ÛºÏÓ¦Ó㬸ù¾ÝÒÑÖªÌõ¼þ·¢ÏÖÔËËã¹æÂÉÊÇÖп¼ÖÐÈȵãÎÊÌ⣬ͬѧÃÇӦעÒâ¸ù¾ÝÒÑÖªÉÆÓÚ·¢ÏÖ¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¼ÆËã¶àÏîʽax3+bx2+cx+dµÄֵʱÓÐÒÔÏÂ3ÖÖËã·¨£¬·Ö±ðͳ¼Æ3ÖÖËã·¨Öеij˷¨´ÎÊý£®
¢ÙÖ±½Ó¼ÆË㣺ax3+bx2+cx+dʱ¹²ÓÐ3+2+l=6£¨´Î£©³Ë·¨£»
¢ÚÀûÓÃÒÑÓÐÃÝÔËËã½á¹û£ºx3=x2•x£¬¼ÆËãax3+bx2+cx+dʱ¹²ÓÐ2+2+1=5£¨´Î£©³Ë·¨£»
¢ÛÖðÏîµü´ú£ºax3+bx2+cx+d=[£¨ax+b£©x+c]x+d£¬ÆäÖеÈʽÓÒ¶ËÔËËãÖк¬ÓÐ3´Î³Ë·¨£®
ÇëÎÊ£º£¨1£©·Ö±ðʹÓÃÒÔÉÏ3ÖÖËã·¨£¬Í³¼ÆËãʽa0x10+a1x9+a2x8+¡­+a9x+a10Öг˷¨µÄ´ÎÊý£¬²¢±È½Ï3ÖÖËã·¨µÄÓÅÁÓ£®
£¨2£©¶Ôn´Î¶àÏîʽa0xn+a1xn-1+a2xn-2+¡­+an-1x+an£¨ÆäÖÐa0£¬a1£¬a2£¬¡­£¬anΪϵÊý£¬n£¾1£©£¬·Ö±ðʹÓÃÒÔÉÏ3ÖÖË㷨ͳ¼ÆÆäÖг˷¨µÄ´ÎÊý£¬²¢±È½Ï3ÖÖËã·¨µÄÓÅÁÓ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸