精英家教网 > 初中数学 > 题目详情
6.如图,已知?ABCD的面积为24,点E为AD边上一点,则图中阴影部分的面积是(  )
A.6B.9C.12D.15

分析 由平行四边形的性质和三角形面积即可得出结论.

解答 解:∵?ABCD的面积为24,点E为AD边上一点,
∴△BCE的面积=$\frac{1}{2}$平行四边形的面积=12,
∴图中阴影部分的面积=24-12=12;
故选:C.

点评 本题考查了平行四边形的性质以及三角形的面积;熟练掌握平行四边形的性质是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列各式中,不能运用整式乘法公式进行计算的是(  )
A.(a+0.5)(a-0.5)B.(x+y)(-x-y)C.(3a+4b)(3b-4a)D.(a2+b2)(a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知一个平行四边形的相邻三边长依次是a+1,a+2,2a-1,则它第四条边的长度是4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.请按要求画出函数y=$\frac{1}{2}$x2的图象:
(1)列表;
 x …-3-2-1 0 1 2 3 …
 y$\frac{9}{2}$ 2$\frac{1}{2}$$\frac{1}{2}$ 2$\frac{9}{2}$ 
(2)描点;
(3)连线;
(4)请你判断点(4,8)、(-$\frac{1}{2}$,-$\frac{1}{8}$)是否在函数图象上,答:点(4,8)在函数图象上,点(-$\frac{1}{2}$,-$\frac{1}{8}$)不在函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在代数式ax2+bx+c中,当x=-1,1,2时,代数式的值依次是0,-8,-9,当x=10时,这个代数式的值是55.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,平面直角坐标系中,矩形OABC的对角线AC=10,边OA=6.
(1)C点的坐标为(8,0);
(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求折痕DE的长;
(3)若点M在x轴上,以M、D、F、N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标($\frac{1}{4}$,3)、($\frac{31}{4}$,3)、( $\frac{7}{8}$,3)..

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,在矩形OADC中,以点O为原点,以OA,OC所在直线分别为x轴,y轴建立平面直角坐标系,且抛物线y=-x2+bx+c与x轴交于点A,与y轴交于点C,且D点的坐标为(6,8).
(1)求此抛物线的解析式;
(2)在CD上方的抛物线上有一点P,连接PC,PA,求出△PCA面积的最大值;
(3)抛物线的对称轴l在边OA(不包括O,A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,点M的横坐标为m,交抛物线于点P,连接PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,若不存在,也请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,网格中每个小正方形的边长都为1,A、B、C都在格点上,试问△ABC是直角三角形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨,则每吨按政府补贴优惠价a元收费;若每月用水量超过14吨,则超过部分每吨按市场调节价b元收费.小刘家3月份用水10吨,交水费20元;4月份用水16吨,交水费35元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小刘预计他家5月份用水不会超过22吨,那么小刘家5月份最多交多少元水费?

查看答案和解析>>

同步练习册答案