精英家教网 > 初中数学 > 题目详情

如图二次函数y=-mx2+4m图象的顶点坐标为(0,2),矩形ABCD的顶点B,C在x轴上,A,D在抛物线上,矩形ABCD在抛物线与x轴所围成的区域内.
(1)求二次函数的解析式.
(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数关系式,并求自变量x的取值范围.

解:(1)∵二次函数y=-mx2+4m的顶点坐标为(0,2),
∴4m=2,
即m=
∴抛物线的解析式为:y=-x2+2;

(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上,
∴AD∥x轴,
又因为抛物线关于y轴对称,
所以D、C点关于y轴分别与A、B对称.
所以AD的长为-2x,AB长为y,
所以周长p=2y-4x=2(-x2+2)-4x=-(x+2)2+8.
∵A在抛物线上,且ABCD组成矩形,
∴x<2,
∵四边形ABCD为矩形,
∴y>0,
即x>-2.
所以p=-(x+2)2+8=-x2-4x+4,其中-2<x<0.
分析:(1)由顶点坐标(0,2)可直接代入y=-mx2+4m,求得m=,即可求得抛物线的解析式;
(2)由图及四边形ABCD为矩形可知AD∥x轴,长为2x的据对值,AB的长为A点的总坐标,由x与y的关系,可求得p关于自变量x的解析式,因为矩形ABCD在抛物线里面,所以x小于0,大于抛物线与x负半轴的交点.
点评:本题考查了二次函数与几何矩形相结合的应用,比较综合,只要熟练二次函数的性质,数形结合得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图二次函数y=
12
x2-2x+4
的图象交y轴于点A,顶点为点B.
(1)判断点B是否在直线y=x上,并说明理由;
(2)若直线y=kx+1交y轴于点P,交直线AB于点C,若△APC为等腰三角形,求直线y=kx+1的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C.
(1)试确定b、c的值;
(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m),
(1)求二次函数的解析式并写出D点坐标;
(2)点Q是线段AB上的一动点,过点Q作QE∥AD交BD于E,连结DQ,当△DQE的面积最大时,求点Q的坐标;
(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图二次函数y=ax2+bx+c的顶点在第四象限,且经过点(0,-2)、(-1,0),则y=a+b+c的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•密云县二模)如图二次函数y=ax2+bx+c中a>0,b>0,c<0,则它的图象大致是(  )

查看答案和解析>>

同步练习册答案