精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,
(1)求证:△ADO∽△EDA;
(2)若正方形的边长为2,求OD的长.

(1)证明:∵AF⊥DE,
∴∠AOD=90°,
又∵四边形ABCD是正方形,
∴∠EAD=90°,
∴∠AOD=∠EAD,
又∵∠ADO=∠EDA,
∴△ADO∽△EDA;

(2)解:∵△ADO∽△EDA,
=
∵正方形ABCD的边长等于2,
∴AE=1,
在Rt△ADE中,DE==
∴OD=
分析:(1)由于AF⊥DE,则∠AOD=90°,又四边形ABCD是正方形,则∠EAD=90°,即∠AOD=∠EAD,又∠ADO=∠EDA,那么有△ADO∽△EDA;
(2)由(1)知△ADO∽△EDA,可得比例线段OD:AD=AE:DE,而正方形的边长等于2,则AE=1,DE=,易求OD.
点评:本题利用了相似三角形的判定和性质、勾股定理、正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案