精英家教网 > 初中数学 > 题目详情
4.国家环保局统一规定,空气质量分为5级.当空气污染指数达0-50时为1级,质量为优;51-100时为2级,质量为良;101-200时为3级,轻度污染;201-300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:
(1)本次调查共抽取了50天的空气质量检测结果进行统计;
(2)扇形统计图中3级空气质量所对应的圆心角为72°;
(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.(2016年共365天)

分析 (1)根据4级的天数数除以4级所占的百分比,可得答案;
(2)根据圆周角乘以3级所占的百分比,可得答案;
(3)根据有理数的减法,可得5级的天数,根据5级的天数,再根据样本数据估计总体,可得答案.

解答 解:(1)本次调查共抽取了24÷48%=50(天),
故答案为:50;

(2)360°×$\frac{10}{50}$=72°,
故答案为:72;

(3)5级抽取的天数50-3-7-10-24=6天,
365×$\frac{24+6}{50}$×100%=219(天),
答:2015年该城市有219天不适宜开展户外活动.

点评 本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.“a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:
(1)填空:因为x2-4x+6=(x-2)2+2;所以当x=2时,代数式x2-4x+6有最小(填“大”或“小”)值,这个最值为2.
(2)比较代数式x2-1与2x-3的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112?g/cm2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,抛物线y=ax2+$\frac{4}{5}$x+c与直线y=-$\frac{2}{5}$x-$\frac{2}{5}$交于A、B两点,已知点B的横坐标是4,直线y=-$\frac{2}{5}$x-$\frac{2}{5}$与x、y轴的交点分别为A、C,点P是抛物线上一动点.

(1)求抛物线的解析式;
(2)若点P在直线y═-$\frac{2}{5}$x-$\frac{2}{5}$上方,求△PAC的最大面积;
(3)设M是抛物线对称轴上的一点,以点A、B、P、M为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.五一期间,新华商场贴出促销海报.在商场活动期间,王莉同学随机调查了部分参与活动的顾客,并将调查结构绘制了两幅不完整的统计图.

请你根据图中的信息回答下列问题:
(1)王莉同学随机调查的顾客有200人;
(2)请将统计图1补充完整;
(3)在统计图2中,“0元”部分所对应的圆心角是216度;
(4)若商场每天约有2 000人次摸奖,请估算商场一天送出的购物券总金额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:20160+|-1|+($\frac{1}{2}$)-1-3101×($\frac{1}{3}$)100

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【发现】如图1∠ACB=∠ADB=90°,
那么点D在经过A,B,C三点的圆上(如图1①)
【思考】
如图1②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?图中卡通人证明了D不在⊙O外,请你画图证明点D也不在⊙O内.

【应用】:利用【发现】和【思考】中的结论解决以下问题:
如图2,在Rt△ACB中,∠ACB=90°,CA=6,$cos∠CAB=\frac{1}{3}$,若将△ACB绕点A顺时针旋转得Rt△AC′B′,旋转角为α(0°≤α≤180°)连结CC′交BB′于点F,交AB边于点O.
(1)请证明:∠BFO=∠CAO.
(2)若CA=CO=6,求则OF的长.
(3)在运动过程中,请证明F永远是BB′的中点,并直接写出点F的运动路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若反比例函数的图象过点(3,-2),则其函数表达式为y=-$\frac{6}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)

查看答案和解析>>

同步练习册答案