精英家教网 > 初中数学 > 题目详情

(9分)已知二次函数的图象与x轴相交于AB两点(AB右),与y轴相交于点C,顶点为D

1.(1)求m的取值范围;

2.(2)当点A的坐标为,求点B的坐标;

【小题】(3)当BCCD时,求m的值.

 

 

1.(1)∵二次函数的图象与x轴相交于AB两点

b2-4ac>0,∴4+4m>0,························································································· 2分

解得:m>-1··············································································································· 3分

 

2.(2)解法一:

∵二次函数的图象的对称轴为直线x=-=1································ 4分

∴根据抛物线的对称性得点B的坐标为(5,0)···························································· 6分

解法二:

x=-3,y=0代入中得m=15···························································· 4分

∴二次函数的表达式为

y=0得·························································································· 5分

解得x1=-3,x2=5

∴点B的坐标为(5,0)    

3.(3)如图,过DDEy轴,垂足为E.∴∠DEC=∠COB=90°,

BCCD时,∠DCE +∠BCO=90°,

∵∠DEC=90°,∴∠DCE +∠EDC=90°,∴∠EDC=∠BCO

∴△DEC∽△COB,∴=.·················································································· 7分

由题意得:OEm+1,OCmDE=1,∴EC=1.∴ =.

OBm,∴B的坐标为(m,0).··············································································· 8分

将(m,0)代入得:-m 2+2 m + m=0.

解得:m1=0(舍去), m2=3.··················································································· 9分

 

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴交点的横坐标分别为x1=4,x2=-2,且图象经过点(0,-4),求这个二次函数的解析式,并求出最大(或最小)值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴两交点间的距离为2,若将图象沿y轴方向向上平移3个单位,则图象恰好经过原点,且与x轴两交点间的距离为4,求原二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与y轴的交点坐标为(0,a),与x轴的交点坐标为(b,0)和(-b,0),若a>0,则函数解析式为(  )
A、y=
a
b2
x2+a
B、y=-
a
b2
x2+a
C、y=-
a
b2
x2-a
D、y=
a
b2
x2-a

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴交于点A(-1,0)和点B(3,0),且与直线y=kx-4交y轴于点C. 
(1)求这个二次函数的解析式;
(2)如果直线y=kx-4经过二次函数的顶点D,且与x轴交于点E,△AEC的面积与△BCD的面积是否相等?如果相等,请给出证明;如果不相等,请说明理由;
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值为2,求二次函数的解析式.

查看答案和解析>>

同步练习册答案