精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的各边都平行于坐标轴,点A、C分别在直线y=2x和x轴上,若点A在直线y=2x上运动.
(1)当点A运动到横坐标x=3时,写出点C的坐标.
(2)写出x=1时,直线AC的函数解析式.
(3)若点A横坐标为m,且满足1≤m≤3时,请你求出对角线AC在移动时所扫过的四边形的面积.
分析:(1)把x=2代入y=2x求出A的坐标,根据正方形性质求出B、C的坐标;
(2)求出A、C的坐标,设直线AC的函数解析式为y=kx+b,把A、C的坐标代入得出方程组,求出方程组的解即可;
(3)根据图形得出面积是一个梯形EFCA的面积,根据AC的解析式求出E、F的坐标,分别求出△OEF和△OAC的面积,相减即可求出答案.
解答:解:(1)当x=3时,y=2x=6,则A(3,6)
∴B(9,6)
∴C(9,0).

(2)x=1时,y=2x=2,
∴A(1,2),
∴B(3,2),
∴C(3,0),
设直线AC的函数解析式为:y=kx+b,
0=3k+b
2=k+b

解得:k=-1,b=3,
∴y=-x+3,
即AC的函数表达式为:y=-x+3.

(3)对角线AC扫过的四边形的形状为梯形为梯形EFCA,
当1≤m≤3时,由(2)得m=1
∴A(1,2),
即E(1,2),
此时C(3,0),
即F(3,0),
∵直线AC的解析式为y=-x+3
∴它与x轴的交点为C的坐标是(3,0)
又由(1)知A(3,6),C(9,0)
△AOC的面积=
1
2
×9×6=27,
△OEF的面积=
1
2
×3×2=3
扫过的面积S梯形EFCA=27-3=24,
答:对角线AC在移动时所扫过的四边形的面积是24.
点评:本题考查了解二元一次方程组,用待定系数法求一次函数的解析式,三角形的面积,点的坐标,正方形的性质等知识点的运用,综合运用性质进行计算是解此题的关键,题目综合性比较强,有一定的难度,对学生提出较高的要求.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案