精英家教网 > 初中数学 > 题目详情
精英家教网如图,B,C是河岸边两点,A是对岸边上一点,测得∠ABC=45°,∠ACB=60°,BC=60米,甲想从A点出发在最短的时间内到达BC边,若他的速度为5米/分,则他所用的最短时间为
 
分.
分析:有了速度,求时间,需要找出距离即AD的长.在图中两个直角三角形中,利用60°、45°两个角的正切值,以AD为中介,可以把CD和BD联系起来,然后根据二者的关系,列方程即可解答.
解答:精英家教网解:过A点作AD⊥CB交BC于点D,所走路线为A→D,
∵∠ABC=45°,∠ACB=60°,
∴tan∠CAD=
CD
AD
,tanB=
AD
BD
,∴tan30°=
CD
AD
,tan45°=
AD
BD

∴AD=
3
CD,AD=BD.
又∵CD+BD=60,
∴CD+AD=60.
3
3
AD+AD=60,
∴AD=90-30
3

90-30
3
5
=(18-6
3
)分.
点评:解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为
 
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,B、C是洲河岸边两点,A是河对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=200米,则点A到岸边BC的距离是
 
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:
3
=1.73
,结果保留两位有效数字)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•包头)如图,为了确定一条河的宽度AB,可以在点B一侧的岸边选择一点C,使得CB⊥AB,并量得CB=40米,测得∠ACB=45°,那么河的宽度AB是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,张明站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,他测得小船C的俯角是∠FDC=30°,若张明的眼睛与地面的距离是1.8米,BG=1米,BG平行于AC所在的直线,tan∠BAE=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:
3
≈1.73
,结果保留两位有效数字).

查看答案和解析>>

同步练习册答案