精英家教网 > 初中数学 > 题目详情
(2001•宁波)△ABC中∠A为锐角,,AB+AC=6(cm),设AC=xcm,△ABC的面积为ycm2
(1)求y关于x的函数解析式和自变量x的取值范围;
(2)当AC长度为何值时,△ABC的面积最大,最大面积是多少?
【答案】分析:(1)可根据AB,AC的关系,先表示出AB,而sinA其实就是AB边上的高与AC边的比.因此也可用AC表示出三角形的高,那么根据三角形的面积公式即可得出关于x、y的函数关系式;
(2)根据(1)得出的函数解析式以及自变量的取值范围即可得出面积的最大值以及此时AC的长度.
解答:解:(1)由题意可知:AB=6-x(cm),sinA=
那么y=×AB×CD=×AB×AC•sinA=×(6-x)×x=-x2+x,
即:y=-x2+x(0<x<6);

(2)由(1)可知:y=-x2+x=-(x-3)2+
因此当x=3时,ymax=
即当AC=3cm,三角形ABC的面积最大,最大值是cm2
点评:本题主要考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2001•宁波)已知α,β是方程x2-x-1=0的两根,抛物线y=ax2+bx+c经过两点(α,β)(β,α),且a+b+c=1,求a,b,c的值.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(2001•宁波)一次时装表演会预算中票价定为每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险5000(不列入成本费用),请解答下列问题:
(1)当观众不超过1000人时,毛利润y关于观众人数x的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;
(2)若要使这次表演会获得36000元的毛利润,那么需售出多少张门票需支付成本费用多少元(当观众人数不超过1000人时,表演会的毛利润=门票收入-成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入-成本费用-平安保险费).

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2001•宁波)已知α,β是方程x2-x-1=0的两根,抛物线y=ax2+bx+c经过两点(α,β)(β,α),且a+b+c=1,求a,b,c的值.

查看答案和解析>>

科目:初中数学 来源:2009年广西河池市中考数学模拟试卷(三)(解析版) 题型:解答题

(2001•宁波)一次时装表演会预算中票价定为每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险5000(不列入成本费用),请解答下列问题:
(1)当观众不超过1000人时,毛利润y关于观众人数x的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;
(2)若要使这次表演会获得36000元的毛利润,那么需售出多少张门票需支付成本费用多少元(当观众人数不超过1000人时,表演会的毛利润=门票收入-成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入-成本费用-平安保险费).

查看答案和解析>>

科目:初中数学 来源:2001年浙江省宁波市中考数学试卷(解析版) 题型:解答题

(2001•宁波)已知α,β是方程x2-x-1=0的两根,抛物线y=ax2+bx+c经过两点(α,β)(β,α),且a+b+c=1,求a,b,c的值.

查看答案和解析>>

同步练习册答案