精英家教网 > 初中数学 > 题目详情

如图,将一副直角三角形的直角顶点C叠放一起
(1)如图1,若CE恰好是∠ACD的角平分线,请你猜想此时CD是不是的∠ECB的角平分线?并简述理由;
(2)如图1,若∠ECD=α,CD在∠ECB的内部,请猜想∠ACE与∠DCB是否相等?并简述理由;
(3)在图2的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.

解:(1)CD是∠ECB的角平分线,
理由是:∵∠ACD=90°,CE是∠ACD的角平分线,
∴∠ECD=∠ACD=45°,
∴∠BCD=90°-∠ECD=45°=∠ECD,
即CD是∠ECB的角平分线;

(2)∠ACE=∠DCB,
理由是:∵∠ACD=∠BCE=90°,∠ECD=α,
∴∠ACE=90°-α,∠DCB=90°-α,
∴∠ACE=∠DCB;

(3)∠DCE+∠ACB=180°,
理由是:∵∠ACD=∠BCE=90°,
∴∠DCE+∠ACB=∠DCE+∠ACE+∠BCE=∠ACD+∠BCE=90°+90°=180°,
即∠DCE+∠ACB=180°.
分析:(1)根据∠ACD=90°和CE是∠ACD的角平分线求出∠ECD=∠ACD=45°,求出∠BCD=45°=∠ECD,即可得出答案;
(2)根据∠ACD=∠BCE=90°和∠ECD=α,求出∠ACE=∠DCB=90°-α即可;
(3)根据∠ACD=∠BCE=90°求出∠DCE+∠ACB=∠DCE+∠ACE+∠BCE=∠ACD+∠BCE,代入求出即可.
点评:本题考查了角的有关计算的应用,关键是能求出各个角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已精英家教网知线段AB=1,∠BAC=θ.
(1)请用θ的三角函数表示线段BE的长
 

(2)图中与线段BE相等的线段是
 

(3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示)

查看答案和解析>>

科目:初中数学 来源:2013届浙江乐清盐盘一中八年级上学期期中考试数学试卷(解析版) 题型:填空题

如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____

 

查看答案和解析>>

科目:初中数学 来源:专项题 题型:解答题

我们知道“直角三角形斜边上的高将三角形分成两个与原三角形相似的直角三角形”,用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形,按从大到小的顺序编号为①至⑦(如图),从而制成一副“三角七巧板”,已知AB=1,∠BAC=
(1)请用的三角函数表示线段BE的长:____;
(2)图中与线段BE长度相等的线段是_____;
(3)仔细观察图形,求出⑦中最短的直角边DH的长(用的三角函数表示)。

查看答案和解析>>

科目:初中数学 来源:第1章《直角三角形的边角关系》中考题集(23):1.4 船有触角的危险吗(解析版) 题型:解答题

我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已知线段AB=1,∠BAC=θ.
(1)请用θ的三角函数表示线段BE的长______;
(2)图中与线段BE相等的线段是______;
(3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江乐清盐盘一中八年级上学期期中考试数学试卷(带解析) 题型:填空题

如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____

查看答案和解析>>

同步练习册答案