精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,已知M1(3,2),N1(5,-1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).
(1)若M(-2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线数学公式上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:数学公式,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的数学公式,求此时BP的长度.

解:(1)由于图形平移过程中,对应点的平移规律相同,
由点M到点M′可知,点的横坐标减5,纵坐标加3,
故点N′的坐标为(5-5,-1+3),即(0,2).
N(0,2);

(2)∵N(0,2)在抛物线y=x2+x+k上
∴k=2
∴抛物线的解析式为y=x2+x+2

(3)∵y=x2+x+2=(x+22
∴B(-2,0)、A(0,2)、E(-,1)
∵CO:OF=2:
∴CO=-m,FO=-m,BF=2+m
∵S△BEC=S△EBF+S△BFC=
(2+m)(-m+1)=
整理得:m2+m=0
∴m=-1或0
∵m<0
∴m=-1

(4)在Rt△ABO中,tan∠ABO===
∴∠ABO=30°,AB=2AO=4
①当∠BPE>∠APE时,连接A1B则对折后如图2,A1为对折后A的所落点,△EHP是重叠部分.
∵E为AB中点,∴S△AEP=S△BEP=S△ABP
∵S△EHP=S△ABP
=S△EHP=S△BHP=S△ABP
∴A1H=HP,EH=HB=1
∴四边形A1BPE为平行四边形
∴BP=A1E=AE=2
即BP=2
②当∠BPE=∠APE时,重叠部分面积为△ABP面积的一半,不符合题意;
③当∠BPE<∠APE时.
则对折后如图3,A1为对折后A的所落点.△EHP是重叠部分
∵E为AB中点,
∴S△AEP=S△BEP=S△ABP
∵S△EHP=S△ABP∴S△EBH=S△EHP==S△ABP
∴BH=HP,EH=HA1=1
又∵BE=EA=2
∴EHAP,
∴AP=2
在△APB中,∠ABP=30°,AB=4,AP=2.
∴∠APB=90°,
∴BP=
综合①②③知:BP=2或
分析:(1)首先根据点M的移动方向和单位得到点N的平移方向和单位,然后按照平移方向和单位进行移动即可;
(2)将点N的坐标代入函数的解析式即可求得k值;
(3)配方后确定点B、A、E的坐标,根据CO:OF=2:用m表示出线段CO、FO和BF的长,利用S△BEC=S△EBF+S△BFC=得到有关m的方程求得m的值即可;
(4)分当∠BPE>∠APE时、当∠BPE=∠APE时、当∠BPE<∠APE时三种情况分类讨论即可.
点评:此题主要考查了点的平移、二次函数解析式的确定,图形折叠问题及图形面积等重要知识点,同时还考查了分类讨论的数学思想,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案