精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为56°,则∠B等于
 
.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角是
 
分析:首先根据题意作图,注意图形分为锐角三角形与钝角三角形两种情况去分析,然后根据等腰三角形的性质与线段垂直平分线的性质,即可求得答案.
解答:精英家教网解:连接BD,
如图1,∵DE是AB的垂直平分线,
∴∠AED=90°,
∵∠ADE=56°,
∴∠A=34°,
∵AB=AC,
∴∠ABC=∠C=
180°-∠A
2
=73°;
如图2,∵DE是AB的垂直平分线,
∴∠AED=90°,
∵∠ADE=56°,
∴∠A=∠ADE+∠AED=146°,
∵AB=AC,
∴∠ABC=∠C=
180°-∠A
2
=17°;
∴∠B等于73°或17°.

如图1:∵BD⊥AC,∠ABD=25°,
∴∠A=65°,
∵AB=AC,
∴∠ABC=∠C=
180°-∠A
2
=57.5°;精英家教网
如图2:∵BD⊥AC,∠ABD=25°,
∴∠A=90°+∠ABD=115°,
∵AB=AC,
∴∠ABC=∠C=
180°-∠A
2
=32.5°;
∴该三角形的一个底角是57.5°或32.5°.
故答案为:73°或17°,57.5°或32.5°.
点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题难度适中,解题的关键是注意分类讨论思想与数形结合思想的应用,小心别漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案