精英家教网 > 初中数学 > 题目详情
如图,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).

(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);
(3)当(2)中 的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.
(1)BE、PE;
(2)
(3)当⊙E与平行四边形EFPQ的四条边交点的总个数是2个时,0<r<
当⊙E与平行四边形EFPQ的四条边交点的总个数是4个时,r=;  
当⊙E与平行四边形EFPQ的四条边交点的总个数是6个时,<r<2;
当⊙E与平行四边形EFPQ的四条边交点的总个数是3个时,r=2;
当⊙E与平行四边形EFPQ的四条边交点的总个数是0个时,r>2.

试题分析:(1)根据三角形ABC是等边三角形和EF∥AC,可得等边三角形BEF,则可写出与EF相等的线段;
(2)根据(1)可知EF=BE=4﹣x,要求平行四边形的面积,只需求得EF边上的高.作EH⊥AC于H,根据30度的直角三角形EHC进行表示EH的长,进一步求得平行四边形的面积;
(3)根据二次函数的顶点式或顶点的公式法求得平行四边形的面积的最大值时x的值,分析平行四边形的位置和形状.然后根据公共点的个数分析圆和平行四边形的各边的位置关系,进一步根据圆和直线的位置关系求得r的取值范围.
试题解析:(1)BE、PE、BF三条线段中任选两条;
(2)作EQ∥FP交FE于E,
设EC为x
∵EH⊥AC,
∴∠EHC=90°
∴△CHE为直角三角形
∵△ABC为等边三角形,
∴∠C=60°
在Rt△CHE中,∠CHE=90°,∠C=60°,
∠HEC=180°﹣∠C﹣∠EHC=30°
∴2HC=EC
∵HE2=EC2﹣HC2
,
∵EF∥AC,FP∥EQ
∴四边形EFPQ为平行四边形
∴PQ=FE
又∵PE=BE
∴PQ=EF=BE=4﹣x


(3)因为,所以当x=2时,平行四边形EFPQ的面积最大.此时E、F、P分别为△ABC的三边BC、AB、AC的中点,且C、Q重合,四边形EFPQ是边长为2的菱形(如图).

过点E点作ED⊥FP于D,则ED=EH=
当⊙E与平行四边形EFPQ的四条边交点的总个数是2个时,0<r<
当⊙E与平行四边形EFPQ的四条边交点的总个数是4个时,r=;  
当⊙E与平行四边形EFPQ的四条边交点的总个数是6个时,<r<2;
当⊙E与平行四边形EFPQ的四条边交点的总个数是3个时,r=2;
当⊙E与平行四边形EFPQ的四条边交点的总个数是0个时,r>2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).

(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣)].

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=-2(x-1)2+3的图象的顶点坐标是(   )
A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为
A.y=(x-2)2B.y=x2C.y=x2+6D.y=(x-2)2+6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(4,3),(3,0).

(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图像经过怎样的平移得到的图像?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装.规定试销期间销售单价不低于成本单价,且获利不得高于35%.经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.
(1)求一次函数y=kx+b的关系式;
(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的解析式为
(1)求证:不论m为何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值;
(2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的点P的坐标;
(3)若(2)中△PAB的面积为S(S>0),试根据面积S值的变化情况,确定符合条件的点P的个数(本小题直接写出结论,不要求写出计算、证明过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的图象如图所示,则y<0时自变量x的取值范围是     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(   )
A.a>0B.当x>1时,y随x的增大而增大
C.c<0D.3是方程ax2+bx+c=0的一个根

查看答案和解析>>

同步练习册答案