精英家教网 > 初中数学 > 题目详情

如图,直线数学公式与x轴交于B,与y轴交于A,点C在双曲线y=数学公式上一点,且△ABC是以AB为底的等腰直角三角形,CD⊥AB于D,M、N分别是AC、BC上的一动点,且∠MDN=90°.下列结论:
①k=-4;②AM=CN;③AM2+BN2=MN2;④MN平分∠CND.
其中正确的是


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ②③④
  4. D.
    ①③④
A
分析:首先求得A、B的坐标,进而利用待定系数法即可求得直线CD的解析式,然后根据AC⊥BC,则直线AC与直线BC的解析式的一次项次数互为负倒数即可求得C的坐标,从而利用待定系数法求得k的值;DE⊥AC于点E,作DF⊥BC于点F,易证△DEM≌△DFN,则②可以得证,然后利用待定系数即可证得③是正确的;
利用M,N的特殊位置说明④的正确性.
解答:在y=-x+1中,令x=0,解得:y=1,则A的坐标是(0,1);
令y=0,解得:x=5,则B的坐标是(5,0),
则D的坐标是:(),
设直线CD的解析式是y=5x+b,代入()得:+b=,解得:b=-12,
则函数的解析式是:y=5x-12,
设C的横坐标是m,则纵坐标是5m-12,
则AC的斜率是:,BC的斜率是:
=-1,
解得:m=3或2.
则C的坐标是:(3,3)(舍去)或(2,-2).
把(2,-2)代入y=得:k=-4.
故①正确;
作DE⊥AC于点E,作DF⊥BC于点F.
则DE⊥DF,且DE=DF,
∴∠DEF=∠MDN,
∴∠EDM=∠FDN,
在△DEM和△DFN中,
∴△DEM≌△DFN.
∴DM=DM,EM=NF,
又∵等腰直角△ABD中,CD是中线,
∴AE=CE=CF=BF,
∴AM=CN,故②正确;
∵在直角△CMN中,CM2+CN2=MN2
设AE=CE=CF=BF=x,EM=FN=y,
则MN2=CM2+CN2=(x-y)2+(x+y)2=2(x2+y2),
AM2+BN2=(x+y)2+(x-y)2=2(x2+y2),
则AM2+BN2=MN2③正确;
当N在B点时,M正好在C点,不会出现MN平分∠CND的情况,故④一定是错误的;
故选A.
点评:本题考查了反比例函数、勾股定理以及全等三角形的判定与性质,正确求得C的坐标是关键.
练习册系列答案
相关习题

科目:初中数学 来源:2011年北京市朝阳区九年级综合练习(二)数学卷 题型:解答题

如图,直线与x轴交于点A,与y轴交于点B.

(1)求点A、B的坐标
(2)若点P在直线上,且横坐标为-2,
求过点P的反比例函数图象的解析式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽省芜湖市保沙中学九年级(上)第二次联考数学试卷(解析版) 题型:填空题

如图,直线与x轴交于A点,与y轴交于B点,M是△ABO的内心,函数的图象经过M点,则k=   

查看答案和解析>>

科目:初中数学 来源:2011年山东省淄博市中考数学模拟试卷(一)(解析版) 题型:选择题

如图,直线与x轴交于C,与y轴交于D,以CD为边作矩形CDAB,点A在x轴上,双曲线y=(k<0)经过点B,则k的值为( )

A.1
B.3
C.4
D.-6

查看答案和解析>>

科目:初中数学 来源:2013年海南省海口市中考数学模拟试卷(十六)(解析版) 题型:解答题

如图,直线与y轴交于A点,过点A的抛物线与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
(1)求B点坐标以及抛物线的函数解析式.
(2)动点P在线段OC上,从原点O出发以每秒一个单位的速度向C运动,过点P作x轴的垂线交直线AB于点M,交抛物线于点N.设点P运动的时间为t秒,求线段MN的长与t的函数关系式,当t为何值时,MN的长最大,最大值是多少?
(3)在(2)的条件下(不考虑点P与点O、点C重合的情况),连接CM、BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t的值,平行四边形BCMN是否为菱形?说明理由.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年四川成都望子成龙学校九年级上期中数学试卷(解析版) 题型:解答题

如图,直线与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.

(1)求k的值;

(2)点N(a,1)是反比例函数(x>0)图像上的点,在x轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案