精英家教网 > 初中数学 > 题目详情
已知a1=2×12-1a2=2×22-1,a3=2×32-1,…,则an=
2n2-1
2n2-1
,a2011=
2×20112-1
2×20112-1
(只代入即可).
分析:观察一系列等式,归纳总结得到一般性规律,即可得到结果.
解答:解:根据题意总结得:an=2n2-1;a2011═2×20112-1.
故答案为:2n2-1;2×20112-1
点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

定义:a是不为1的有理数,我们把
1
1-a
称为a的衍生数.如:2的衍生数是
1
1-2
=-1
,-1的衍生数是
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的衍生数,a3是a2的衍生数,a4是a3的衍生数,…,依此类推,则a2010=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

猜想、探索规律
(1)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒…即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第100组应该有种子数.
 
粒;
(2)已知a1=
1
1×2×3
+
1
2
=
2
3
a2=
1
2×3×4
+
1
3
=
3
8
a3=
1
3×4×5
+
1
4
=
4
15
,…
,依据上述规律,则a99=
 

(3)下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,那么第101个图案中由
 
个基础图形组成;
精英家教网
(4)观察下列各式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…,根据观察计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009

查看答案和解析>>

科目:初中数学 来源: 题型:

定义:a是不为1的有理数,我们把
1
1-a
称为a的差倒数.如:2的差倒数
1
1-2
=-1,-1的差倒数
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依次规律,则a2011为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知a1=2×12-1a2=2×22-1,a3=2×32-1,…,则an=______,a2011=______(只代入即可).

查看答案和解析>>

同步练习册答案