精英家教网 > 初中数学 > 题目详情
如图所示,直线AB、CD、EF相交于点O,且EF⊥CD,若∠AOE=30°,则∠AOC=
60
60
°,∠AOF=
150
150
°,∠BOC=
120
120
°.
分析:根据垂线的定义得到∠COE=90°,根据互余得∠AOC=90°-∠AOE=90°-30°=60°;再利用邻补角的定义有∠AOF=180°-∠AOE=180°-30°=150°;利用对顶角相等得∠BOD=∠AOC=60°,然后再利用邻补角的定义可计算∠BOC=180°-∠BOD=180°-60°=120°.
解答:解:∵EF⊥CD,
∴∠COE=90°,
而∠AOE=30°,
∴∠AOC=90°-∠AOE=90°-30°=60°,
∠AOF=180°-∠AOE=180°-30°=150°;
又∵∠BOD=∠AOC=60°,
∴∠BOC=180°-∠BOD=180°-60°=120°.
故答案为60°,150°,120°.
点评:本题考查了垂线的定义:若两条直线相交所成的角为90°,那么这两条直线垂直,交点叫垂足.也考查了对顶角与邻补角的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图所示,直线AB、CD相交于点O.若OM=ON=MN,那么∠APQ+∠CQP=
240°

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,直线AB与x轴交于A,与y轴交于B.
(1)写出A,B两点的坐标;
(2)求直线AB的函数解析式;
(3)当x=5时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB与CD相交于点O,∠DOE=60°,∠BOE=27°,求∠BOD,∠AOD,∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB、CD相交于点O,∠BOD=40°,OA平分∠EOC,则∠EOD的度数为
100°
100°

查看答案和解析>>

同步练习册答案