精英家教网 > 初中数学 > 题目详情

观察数学公式的解是x1=2,x2=数学公式数学公式的解是x1=3,x2=数学公式;…;数学公式的解是x1=t,x2=数学公式;那么数学公式的解是x1=________,x2=________.

t+1    
分析:根据题目条件,总结出规律,然后将转化为符合规律的形式,直接写出答案即可.
解答:可化为(x-1)+=(t-1)+
根据的解是x1=t,x2=可得,
x-1=t-1或x-1=
即x1=t,x2=+1=
故答案为x1=t,x2=
点评:此题考查了分式方程的解,是一道规律性题目.根据条件探索出规律,利用规律探索出答案是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
关于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=cx2=-
1
c
x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)请观察上述方程与解的特征,比较关于x的方程x+
m
x
=c+
m
c
(m≠0)
与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.
(2)由上述的观察、比较、猜想、验证,可以得出结论:
如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:x+
2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
关于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)请观察上述方程与解的特征,比较关于x+
m
x
=c+
m
c
(m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证.
(2)请用这个结论解关于x的方程:x+
2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读以下内容:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1

①根据以上规律,可得(x-1)(xn+xn-1+xn-2+…+x+1)=
xn+1-1
xn+1-1
(n为正整数);
②根据这一规律,计算:1+2+22+23+24+…22011+22012+22013=
22014-1
22014-1

(2)阅读下列材料,回答问题:
关于x的方程:x+
1
x
=a+
1
a
的解是x1=a,x2=
1
a
x+
2
x
=a+
2
a
的解是x1=a,x2=
2
a
x+
3
x
=a+
3
a
的解是x1=a,x2=
3
a


①请观察上述方程与解的特征,猜想关于x的方程x+
m
x
=a+
m
a
(m≠0)
的解;
②请你写出关于x的方程x+
2
x-3
=m+
2
m-3
的解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面的材料,然后回答问题:
方程x+
1
x
=2+
1
2
的解为x1=2,x2=
1
2

方程x+
1
x
=3+
1
3
的解为x1=3,x2=
1
3

方程x+
1
x
=4+
1
4
的解为x1=4,x2=
1
4
; …
(1)观察上述方程的解,猜想关于x的方程x+
1
x
=5+
1
5
的解是
x1=5,x2=
1
5
x1=5,x2=
1
5

(2)根据上面的规律,猜想关于x的方程x+
1
x
=a+
1
a
的解是
x1=a,x2=
1
a
x1=a,x2=
1
a

知识拓展:
(3)猜想关于x的方程x-
1
x
=1
1
2
的解并验证你的结论
(4)在解方程:y+
y+2
y+1
=
10
3
时,可将方程变形转化为(2)的形式求解,按要求写出你的变形求解过程.

查看答案和解析>>

同步练习册答案