精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=ax2+bx经过圆点O和x轴上的另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1与抛物线y=a2+bx交于点B(-2,m),且y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数解析式;
(2)试判断△ECB的形状,并说明理由.
(1)∵抛物线y=ax2+bx经过圆点O和x轴上的另一点A,它的对称轴x=2,
∴A(4,0),
∵点B(-2,m)在直线y=-2x-1上,
∴m=(-2)×(-2)-1=3;
∴B(-2,3),
∵点A(4,0)、B(-2,3)在抛物线y=ax2+bx上,
16a+4b=0
4a-2b=3

解得
a=
1
4
b=-1

∴抛物线的解析式为:y=
1
4
x2-x;

(2)∵点E是直线x=2与y=-2x-1的交点,
x=2
y=-2x-1
,解得
x=2
y=-5

∴E(2,-5),
∵B(-2,3),C(2,0),
∴CE=|-5|=5,BC=
(2+2)2+32
=5,BE=
(2+2)2+(-5-3)2
=4
5

∴△BCE是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=mx2-2mx+n与x轴交于A、B两点,点A的坐标为(-2,0).
(1)求B点坐标;
(2)直线y=
1
2
x+4m+n
经过点B.
①求直线和抛物线的解析式;
②点P在抛物线上,过点P作y轴的垂线l,垂足为D(0,d).将抛物线在直线l上方的部分沿直线l翻折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线y=
1
2
x+4m+n
只有两个公共点时,d的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(-1,0),点B的坐标为(3,0),二次函数y=x2的图象记为抛物线l1

(1)平移抛物线l1,使平移后的抛物线经过A、B两点,记为抛物线l2,求抛物线l2的函数表达式;
(2)设抛物线l2的顶点为C,请你判断y轴上是否存在点K,使得∠BKC=90°,若存在,求出K点坐标,若不存在,请说明理由;
(3)抛物线l2与y轴交于点D,点P是线段BD上的一个动点,过点P,作y轴的平行线,交抛物线l2于点E,求线段PE长度的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y轴交与点C,O为坐标原点,如果△ABM是直角三角形,AB=2,OM=
5

(1)求点M的坐标;
(2)求抛物线y=ax2+bx+c的解析式;
(3)在抛物线的对称轴上是否存在点P,使得△PAC为直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为1,当点E在边BC上运动时(不与正方形的顶点重合),连接AE,过点E作EF⊥AE交CD于点F.设BE=x,CF=y,求下列问题:
(1)证明△ABE△ECF;
(2)求出y关于x的函数关系式;
(3)试求当x取何值时?y有最大或最小值,是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=______.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+5x+m经过点A(1,0),与y轴交于点B,
(1)求m的值;
(2)若抛物线与x轴的另一交点为C,求△CAB的面积;
(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是(  )
A.y=x+1B.y=x-1C.y=x2-x+1D.y=x2-x-1

查看答案和解析>>

同步练习册答案