精英家教网 > 初中数学 > 题目详情
22、如图,四边形ABCD中,点E在边CD上,连接AE、BE,给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB,将其中的三个关系式作为题设,另外两个作为结论,便构成一个命题.
(1)用序号写出一个真命题(书写形式:如果×××,那么×××),并给出证明.
(2)用序号再写出三个真命题(不要求证明)
分析:(1)如果①②③,那么④⑤.过E点作EF∥AB,与AB交与点F,根据平行线的性质推出EF为梯形ABCD的中位线,根据平行线的性质和等量代换,即可推出∠4=∠3,AB=2EF,通过2EF=AD+BC,即可推出AB=AD+BC,(2)根据真命题的定义,写出命题即可.
解答:(1)如果①②③,那么④⑤.
证明:过E点作EF∥AB,与AB交与点F,
∵AD∥BC,
∴EF∥BC,
∵DE=CE,
∴AF=BF,
即EF为梯形ABCD的中位线,
∴2EF=AD+BC,
∴∠1=∠AEF,∠4=∠FEB,
∵∠1=∠2,
∴∠2=∠AEF,
∴AF=EF,
∵AF=BF,
∴BF=EF,
∴∠3=∠FEB,
∴∠4=∠3,
∵AB=AF+BF,
∴AB=2EF,
∵2EF=AD+BC,
∴AB=AD+BC.


(2)如果①②④,那么③⑤;
如果①③④,那么②⑤;
如果①③⑤,那么②④.
点评:本题主要考查全等三角形的判定与性质,平行线的性质与判定,关键在于正确的做出辅助线,熟练的运用相关的判定及性质定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案