精英家教网 > 初中数学 > 题目详情
(2008•包头)阅读并解答:
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=,x2=,则有x1+x2=,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-,x2=1,则有x1+x2=-,x1x2=-
(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.
【答案】分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.
(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.
解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有
理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,
那么由求根公式可知,
于是有
综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有

(2)x1、x2是方程x2+(2k+1)x+k2-2=0的两个实数根
∴x1+x2=-(2k+1),x1x2=k2-2,
又∵x12+x22=x12+x22+2x1x2-2x1x2=(x1+x22-2x1x2
∴[-(2k+1)]2-2×(k2-2)=11
整理得k2+2k-3=0,
解得k=1或-3,
又∵△=[-(2k+1)]2-4(k2-2 )≥0,解得k≥-
∴k=1.
点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.
将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷45(南阳初中 刘东旭 金凯)(解析版) 题型:解答题

(2008•盐城)阅读理解:
对于任意正实数a,b,∵≥0,∴a-+b≥0,∴a+b≥2,只有点a=b时,等号成立.
结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值2
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+有最小值______;
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《概率》(05)(解析版) 题型:解答题

(2008•三明)阅读对人成长的影响是很大的、希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:
种类频数频率
科普0.15
艺术78
文学0.59
其它81
(1)这次随机调查了______名学生;
(2)把统计表和条形统计图补充完整;
(3)随机调查一名学生,恰好是最喜欢文学类图书的概率是多少?

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2008•包头)阅读并解答:
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=,x2=,则有x1+x2=,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-,x2=1,则有x1+x2=-,x1x2=-
(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中数学 来源:2009年北京市延庆县中考数学一模试卷(解析版) 题型:解答题

(2008•盐城)阅读理解:
对于任意正实数a,b,∵≥0,∴a-+b≥0,∴a+b≥2,只有点a=b时,等号成立.
结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值2
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+有最小值______;
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

同步练习册答案