精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD和正方形DEFG的边长分别为2和1,AE的延长线与CG交于点P.
(1)求证:AP⊥CG;
(2)求EP的长.

解:(1)∵正方形ABCD和正方形DEFG,
∴AD=DC,∠ADC=∠CDG=90°,ED=DG,
在△ADE和△CDG中,

∴△ADE≌△CDG(SAS),
∴∠DCG=∠DAE;
∵∠DCG+∠CGD=90°,
∴∠GAP+∠PGD=90°,
∴∠APG=180°-(∠GAP+∠PGD)=180°-90°=90°,
∴AP⊥GC;

(2)∵AD=2,DE=1,
∴AE==
在△ADE和△CPE中,
∵∠AED=∠PEC,∠EAD=∠ECP,
∴△ADE∽△CPE,
=
=
∴EP=
分析:(1)在△ADE和△CDG中,根据全等三角形的判定得出△ADE≌△CDG,即可得出∠DCG=∠DAE,再根据∠DCG+∠CGD=90°,得出∠GAP+∠PGD=90°,从而得出∠APG=90°,即可证出AP⊥GC;
(2))根据勾股定理AD=2,DE=1,得出AE的值,再在△ADE和△CPE中,∠AED=∠PEC,∠EAD=∠ECP,得出△ADE∽△CPE,即可得出=,从而得出EP的长.
点评:此题考查了正方形的性质、全等三角形的判断与性质、勾股定理,熟记这些知识点是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案