分析 如果连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3,结合EF+BC=7.2cm来求BC的长度.
解答 解:如图,连接AG并延长,交BC于点P.
∵G为△ABC的重心,
∴AG=2GP,
∴AG:AP=2:3,
∵EF过点G且EF∥BC,
∴△AGF∽△APC,
∴AF:AC=AG:AP=2:3.
又∵EF∥BC,
∴△AEF∽△ABC,
∴$\frac{EF}{BC}$=$\frac{AF}{AC}$=$\frac{2}{3}$.
又EF+BC=7.2cm,
∴BC=4.32cm.
点评 本题主要考查了三角形的重心的性质,相似三角形的判定及性质.三角形三边的中线相交于一点,这点叫做三角形的重心.重心到顶点的距离等于它到对边中点距离的两倍.平行于三角形一边的直线截其它两边,所得三角形与原三角形相似.相似三角形的三边对应成比例.
科目:初中数学 来源: 题型:选择题
| A. | 3cm和30° | B. | 3cm和40° | C. | 4cm和50° | D. | 4cm和60° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com