已知:如图所示,直线l的解析式为,并且与x轴、y轴分别交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/秒的速度向x轴正方向运动,问在什么时刻与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿射线BA方向以0.5个单位/秒的速度运动,设t秒时点P到动圆圆心的距离为s,求s与t的关系式;
(4)问在整个运动过程中,点P在动圆的圆面(圆上和圆内部)上,一共运动了多长时间?
(1)(4,0),(0,-3);(2)秒或秒;(3);(4)秒.
【解析】
试题分析:(1)根据直线l的解析式为直接求出A、B两点坐标即可;(2)当圆与直线相切时,分圆还直线l的左右侧两种情况讨论即可;(3)分和讨论即可;(4)设t秒时,圆心运动到点G,连接GP,先证明△AGP∽△AOB,且GP∥OB。从而根据点P进入和离开动圆的圆面的位置求出在整个运动的过程中,点P在动圆的圆面(圆上和圆的内部)上运动的时间.
试题解析:(1)∵直线l的解析式为,并且与x轴、y轴分别交于点A、B,
∴当y=0时,x=4;当x=0时,y=-3. ∴A、B两点的坐标分别为A(4,0),B(0,-3).
(2)若动圆的圆心在C处时与直线l相切,设切点为D,
∵A(4,0)B(0,-3),∴AB=.
如图,连接CD,则CD⊥AD.
∵∠CAD=∠BAO,∠CDA=∠BOA=900,∴Rt△ACD∽Rt△ABO. ∴.
∵CD=1,BO=3,AB=5,∴. ∴. ∴.
∵圆运动的速度为0.4个单位/每秒,∴t=(秒).
根据对称性,圆还可能在直线l的右侧,与直线相切,
若动圆的圆心在E处时与直线l相切,设切点为F,此时,t=(秒).
∴当圆运动秒或秒时圆与直线l相切.
(3).
(4)如图,设t秒时,圆心运动到点G,连接GP,
∵动点P的速度是0.5个单位/秒,∴BP=0.5t,AP=5-0.5t.
∵动圆的速度是0.4个单位/秒,∴OG=0.4t,AP=4-0.4t.
∴. ∴.
∴△AGP∽△AOB,且GP∥OB. ∴GP⊥OA.
∴当GP=1(圆的半径)时,点P进入动圆的圆面.
∴,即. ∴.
∴点P经过AP的时间为(秒).
根据对称性,点A的右边点P在动圆的圆面上还有秒.
∴在整个运动的过程中,点P在动圆的圆面(圆上和圆的内部)上一共运动了秒.
考点:1.一次函数综合题;2.动点和动圆问题;3.直线上点的坐标与方程的关系;4.勾股定理;5.相似三角形的判定和性质;6.平行的判定;7.点和圆的位置关系;8.分类思想的应用.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com