精英家教网 > 初中数学 > 题目详情
已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,
求证:DF=AB.
分析:连接DE,根据矩形性质得出∠C=90°,AB=CD,AD∥BC,求出∠ADE=∠DEC=∠DEF,∠C=∠DFE,证△DFE≌△DCE,推出DF=CD即可.
解答:证明:
连接DE,
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD,AD∥BC,
∴∠ADE=∠DEC,
∵AD=AE,
∴∠ADE=∠FED,
∴∠DEC=∠FED,
∵DF⊥AE,
∴∠DFE=∠C=90°,
在△DFE和△DCE中
∠DEF=∠DEC
∠DFE=∠C
DE=DE

∴△DFE≌△DCE,
∴DF=CD,
∵AB=CD,
∴DF=AB.
点评:本题考查了矩形性质,等腰三角形的性质,平行线性质,全等三角形的性质和判定的应用,注意:矩形的每个角都是直角,矩形的对边相等且平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
试求:(1)AC的长;(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,四边形ABCD内接于⊙O,且AB∥CD,AD∥BC,
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四边形ABCD绕直线AB旋转一周,则所得几何体的表面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD及一点P.
求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.

查看答案和解析>>

同步练习册答案