精英家教网 > 初中数学 > 题目详情
如图,若正方形ABCD的四个顶点恰好分别在四条平行线l1、l2、l3、l4上,设这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).

(1)求证:h1=h3
(2)现在平面直角坐标系内有四条直线l1、l2、l3、x轴,且l1∥l2∥l3∥x轴,若相邻两直线间的距离为1,2,1,点A(4,4)在l1,能否在l2、l3、x轴上各找一点B、C、D,使以这四个点为顶点的四边形为正方形,若能,请直接写出B、C、D的坐标;若不能,请说明理由。
⑴证明过程见解析,⑵能,B(1,3),C(2,0),D(5,1)或B’(7,3),C’(6,0),D’(3,1)
(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CG⊥l3交l3于点G,
∵l2∥l3,∴∠2 =∠3,
∵∠1+∠2=90°,∠4+∠3=90°,∴∠1=∠4,-------------------1分
在ΔABE和ΔCDG中,
-------------3分
∴△ABE≌△CDG,∴AE=CG,即=.-------------4分
       
(2)可以在l1、l2、l3、l4上找点B,C,D,使四边形ABCD为正方形.
具体画法:
1.在l1上截取AE=1+2=3,过点E作l1的垂线,交l2于点B,交x轴于点F;
2.在x 轴上截取FC=1
3.在l1上截取AG=1,过G作l1的垂线交l3于点D,
4连接AB,BC,CD,DA则四边形ABCD为正方形.
其中B(1,3),C(2,0),D(5,1)或B’(7,3),C’(6,0),D’(3,1)------7分
(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CG⊥l3交l3于点G,求得△ABE≌△CDG,可证明,(2)可以在l1、l2、l3、l4上找点B,C,D,使四边形ABCD为正方形
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=        °时,结论AM=MN仍然成立.
(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,是原点,三点的坐标分别
,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.
小题1:求直线的解析式.
小题2:设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.
小题3:设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD沿着直线BD折叠,使点C落在处,AD于点EAD = 8,AB = 4,则DE的长为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,对角线AC、BD相交于点O,点EBD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,求ED的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(10),梯形中,,点是边的中点, 连结于点的延长线交的延长线于点

小题1:求证:
小题2:若,求线段的长

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若等腰梯形ABCD的上、下底之和为2,并且两条对角线所成的锐角为60°,则等腰梯形ABCD的面积为     。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,分别是□ABCD的对角线上的两点,且,求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在四边形ABCD中,∠D=80º,∠A,∠B,∠C的度数之比为3:5:6,则最大的内角是_______度.

查看答案和解析>>

同步练习册答案