
(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=

,
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:

=

:2,
∴AF=

;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
分析:(1)由矩形的性质得∠A=∠D=90°,则∠AEF+∠AFE=90°,由EF⊥CE,则∠AFE=∠CED,得到∠AFE=∠CED,根据三角形相似的判定即可得到结论;
(2)由△AEF∽△DCE,根据相似的性质得到AF:ED=EF:CE,同理由△ECF∽△AEF得EF:AF=CE:AE,即AF:AE=EF:CE,则AE=ED=

;再由△AEF∽△DCE,得AF:DE=AE:DC,代值即可求出AF;
(3)讨论:①当AE=DE,点G不存在;②当AE≠DE,存在点G且AG=DE,由△AEF∽△DCE,得AF:DE=AE:DC,当AG=DE,则DG=AE,得到AF:AG=DG:DC,根据三角形相似的判定易得到△AGF∽△DCG.
点评:本题考查了三角形相似的判定与性质:有两组对应角相等的三角形相似;有两组对应边的比相等,且它们的夹角相等的两个三角形相似;相似三角形对应边的比相等.也考查了矩形的性质.