精英家教网 > 初中数学 > 题目详情
(1999•西安)如图,请观察正六边形,下列结论正确的是( )

A.是中心对称图形,又是轴对称图形,有3条对称轴
B.不是中心对称图形,是轴对称图形,有3条对称轴
C.是中心对称图形,又是轴对称图形,有6条对称轴
D.不是中心对称图形,是轴对称图形,有6条对称轴
【答案】分析:根据轴对称图形与中心对称图形的概念求解.
解答:解:在同一平面内,把这个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,这个图形就是中心对称图形,一个图形沿着一条直线对折后两部分完全重合,这就是轴对称图形.该图形沿着它本身相对的三组顶点有三条对称轴,三组对应变的中点的三条直线也是它的对称轴,故有6条,该图形既是中心对称图形又是轴对称图形,因为是正六边形,所以有6条对称轴.
故选C.
点评:此题考查的是中心对称图形与轴对称图形的概念.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《圆》(05)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《三角形》(03)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年陕西省西安市中考数学试卷(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

同步练习册答案