精英家教网 > 初中数学 > 题目详情

如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=3,BC=7,∠B=45°,P在BC边上,E在CD边上,∠B=∠APE.
(1)求等腰梯形的高;
(2)求证:△ABP∽△PCE.

解:(1)作AF⊥BC于F,作DG⊥BC于G,
∴∠AFB=∠DGC=90°且 AF∥DG,
在△ABF和△DCG中
∴△ABF≌△DCG,
∴BF=CG,
∵AD∥BC且 AF∥DG,
∴AFGD是平行四边形,
∴AD=FG,
∵AD=3,BC=7,∴BF=2
在Rt△ABF中,∠B=45°,∴∠BAF=45°,
∴AF=BF=2,
∴等腰梯形的高为2;
(2)∵四边形ABCD是等腰梯形,
∴∠B=∠C,
∵∠APC=∠APE+∠EPC=∠B+∠BAP,
又∵∠B=∠APE∴∠BAP=∠EPC,
在△ABP和△PCE中,
∴△ABP∽△PCE.
分析:(1)作AF⊥BC于F,作DG⊥BC于G,首先证明△ABF≌△DCG,得到BF=CG,再证明AFGD是平行四边形,根据平行四边形的性质求出等腰梯形的高即可;
(2)利用等腰梯形的性质和相似三角形的判定方法证明:△ABP∽△PCE即可.
点评:本题题主要考查了等腰梯形的性质、全等三角形的判定和性质、平行四边形的判定和性质以及相似三角形的性质与判定,相似三角形的判定是初中阶段考查的重点同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求证:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•昌平区二模)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求证:AB=AD;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,对角线BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度数; 
(2)求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延长BC到E,使CE=AD.
(1)求证:BD=DE;
(2)当DC=2时,求梯形面积.

查看答案和解析>>

同步练习册答案