精英家教网 > 初中数学 > 题目详情

如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).
(1)如果将△ABC向上平移1个单位长度,再向右平移2个单位长度,得到△A1B1C1,则A1的坐标为______;B1的坐标为______;
(2)求线段BC扫过的面积.

解:(1)根据题意,把各点的横坐标加2,纵坐标加1得对应点的坐标,即A1(2,1),B1(9,2).
(2)线段BC扫过的面积=?BCC′B′面积+?B′C′C1B1面积=1×3+2×4=11.
分析:(1)根据平移规律确定对应点的坐标;
(2)线段BC扫过的面积即两个平行四边形(?BCC′B′与?B′C′C1B1)面积的和.
点评:此题考查了平移规律及运用规律解决相关问题,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.建立如图所示的直角坐标系,则抛物线的表达式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

58、丁丁推铅球的出手高度为1.6m,在如图所示的直角坐标系中,铅球运动轨迹是抛物线y=-0.1(x-k)2+2.5,求铅球的落点与丁丁的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:OE是⊙E的半径,以OE为直径的⊙D与⊙E的弦OA相交于点B,在如图所示的直角坐标系中,⊙E交y轴于点C,连接BE、AC.
(1)当点A在第一象限⊙E上移动时,写出你认为正确的结论:
 
(至少写出四种不同类型的结论);
(2)若线段BE、OB的长是关于x的方程x2-(m+1)x+m=0的两根,且OB<BE,OE=2,求以E点为顶点且经过点B的抛物线的解析式;
(3)该抛物线上是否存在点P,使得△PBE是以BE为直角边的直角三精英家教网角形?若存在,求出点P的坐标;若不存在,说明其理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等腰△ABC的腰长为2
2
,底边BC=4,以BC所在的直线为x轴,BC的垂直平分线为y轴建立如图所示的直角坐标系,则B
 
、C
 
、A
 

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在边长为1的方格纸上建立如图所示的直角坐标系,把△ABC向下平移6个单位长度,得到△A1B1C1,画从出△A1B1C1,并作出△A1B1C1关于y轴对称的△A2B2C2,并直接写出点A2,B2,C2的坐标.
A2
-3,-2
,B2
-1,-3
,C2
-4,-4

查看答案和解析>>

同步练习册答案