精英家教网 > 初中数学 > 题目详情
如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.

(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DF•GF.
(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可。
(2)
(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证。

分析:(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可。
(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r。
(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证。
解:(1)证明:∵OA=OB,∴∠OAB=∠OBA。
∵OA⊥CD,∴∠OAB+∠AGC=90°。
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,即∠OBF=90°。∴OB⊥FB。
∵AB是⊙O的弦,∴点B在⊙O上。∴BF是⊙O的切线。 
(2)∵AC∥BF,∴∠ACF=∠F。
∵CD=a,OA⊥CD,∴CE=CD=a。
∵tan∠F=,∴,即
解得
连接OC,设圆的半径为r,则

在Rt△OCE中,,即,解得
(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),∴∠DBG=∠F。
又∵∠F=∠F,∴△BDG∽△FBG。
,即GB2=DG•GF。
∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2013年6月11日,“神舟”十号载人航天飞船发射成功!如图,飞船完成变轨后,就在离地球(⊙O)表面约350km的圆形轨道上运行.当飞船运行到某地(P点)的正上方(F点)时,从飞船上能看到地球表面最远的点Q(FQ是⊙O的切线).已知地球的半径约为6 400km.求:

(1)∠QFO的度数;(结果精确到0.01°)
(2)地面上P,Q两点间的距离(PQ的长).
(π取3.142,结果保留整数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为
A.46° B.53°C.56°D.71°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=

A.28°       B.42°       C.56°       D.84°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.

(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.

(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=,BD=1,求△DEC外接圆的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为
A.B.C.D.

查看答案和解析>>

同步练习册答案