精英家教网 > 初中数学 > 题目详情

某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
原料
含量
产品
A(单位:千克)B(单位:千克)
93
410
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.

解:(1)依题意列不等式组得
由不等式①得x≤32;
由不等式②得x≥30;
∴x的取值范围为30≤x≤32.

(2)y=70x+90(50-x),
化简得y=-20x+4500,
∵-20<0,∴y随x的增大而减小.
而30≤x≤32,
∴当x=32,50-x=18时,y最小值=-20×32+4500=3860(元).
答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元.
分析:(1)关键描述语:用A、B两种原料各360千克、290千克,即所用的A,B两种原料应不大于360千克和290千克,再根据生产两种产品所需各原料的量,列出不等式组即可.
(2)成本总额=甲种产品单价×数量+乙种产品单价×数量,列出关系式进行分析.
点评:(1)根据原题中已知A、B两种原料的克数即可列出不等式组,求出其公共解集可;
(2)根据“成本总额=甲种产品单价×数量+乙种产品单价×数量”列出关系式,根据(1)中所求x的取值范围求出y的最小值即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
原料
含量
产品
A(单位:千克) B(单位:千克)
9 3
4 10
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏扬州市江都区八年级下学期期末考试数学试卷(带解析) 题型:解答题

某公司为了开发新产品,用AB两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:


A(单位:千克)
B(单位:千克)

9
3

4
10
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.

查看答案和解析>>

科目:初中数学 来源:2013届江苏扬州市江都区八年级下学期期末考试数学试卷(解析版) 题型:解答题

某公司为了开发新产品,用AB两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:

A(单位:千克)

B(单位:千克)

9

3

4

10

(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;

(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.

 

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额。

查看答案和解析>>

同步练习册答案