精英家教网 > 初中数学 > 题目详情

△ABC是边长为2的等边三角形,点P、Q分别是边AC与边BC上的两点,QC=2AP,设AP=x,△PQC的面积为S.
(1)直接写出S与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当x为何值时,S有最大值,并求出最大值.

解:(1)过点A作AD⊥BC于点D,作P作PE⊥BC于点E,
∴PE∥AD,

∵△ABC是边长为2的等边三角形,
∴AD=AB•sin60°=
∵AP=x,
∴PC=AC-AP=2-x,

解得:PE=-x,
∵QC=2AP=2x,
∴S=CQ•PE=×2x×(-x)=-x2+x=-(x-1)2+
∴S与x之间的函数关系式为:y=-(x-1)2+

(2)∵a=-<0,
∴S有最大值,
∴当x=1时,S最大值为
分析:(1)首先过点A作AD⊥BC于点D,作P作PE⊥BC于点E,根据平行线分线段成比例定理,即可求得PE的值,继而求得S与x之间的函数关系式;
(2)由a=-<0,即可得当当x=1时,S最大值为
点评:此题考查了二次函数的最值问题与平行线分线段成比例定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为(  )
A、4cm2
B、2
3
cm2
C、3
3
cm2
D、4
3
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与精英家教网y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=-
6
3
7
x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,则△AMN的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点0为旋转中心,逆时针旋转一个角度θ,这种经过相似和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点0叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(
2
2
60°
60°
);
(2)如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(
3
,90°)得到△ADE,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河东区一模)如图1,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿射线AB,BC运动,且它们的速度都为1cm/s.
(Ⅰ)当△PQB是直角三角形时,求AP的长;
(Ⅱ)连接AQ,CP交于点M,则在点P,Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;

查看答案和解析>>

同步练习册答案