精英家教网 > 初中数学 > 题目详情

在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与
AB,BC分别交于点M,N,求证:BM=CN.

证明:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,
则有AB=AE=EF=FC,
∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,
∴∠AEM=∠FEN,
在Rt△AME和Rt△FNE中,
∵E为AB的中点,
∴AB=CF,
∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,
∴Rt△AME≌Rt△FNE,
∴AM=FN,
∴MB=CN.
分析:本题的关键是作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.
点评:本题主要考查了矩形的性质及全等三角形的判定,本题的关键是证明Rt△AME≌Rt△FNE,利用全等的性质和等量代换求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系,并求自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在矩形ABCD中,AB=8,AD=6,E为AB边上一点,连接DE,过C作CF垂直DE.
(1)求证:△CDF∽△DEA;
(2)若设CF=x,DE=y,求y与x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN是正方形.

查看答案和解析>>

同步练习册答案