【题目】如图,点C在线段AB上,点M、N分别是AC、BC的中点.
若,求线段MN的长;
若C为线段AB上任一点,满足,其它条件不变,你能猜想MN的长度吗?并说明理由,你能用一句简洁的话描述你发现的结论吗?
若C在线段AB的延长线上,且满足cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.
【答案】(1)MN=7cm;(2)MN=a;结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=AB;(3)MN=b.
【解析】
(1)由中点的定义可得MC、CN长,根据线段的和差关系即可得答案;(2)根据中点定义可得MC=AC,CN=BC,利用MN=MC+CN,,即可得结论,总结描述即可;(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.
(1)∵点M、N分别是AC、BC的中点,AC=8,CB=6,
∴MC=AC=4,CN=BC=3,
∴MN=MC+CN=7cm.
(2)∵点M、N分别是AC、BC的中点,
∴MC=AC,CN=BC,
∵AC+BC=AB=a,
∴MN=MC+CN=(AC+BC)=a.
综上可得结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=AB.
(3)如图:当点C在线段AB的延长线时,则AC>BC,
∵M是AC的中点,
∴CM=AC,
∵点N是BC的中点,
∴CN=BC,
∴MN=CM-CN=(AC-BC)=b.
科目:初中数学 来源: 题型:
【题目】阅读材料:善于思考的小明在解方程组时,采用了一种“整体代换”的解法,解法如下:
解:将方程②8x+20y+2y=10,变形为2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则y=-1;把y=-1代入①得,x=4,所以方程组的解为:,
请你解决以下问题:
(1)试用小明的“整体代换”的方法解方程组
(2)已知x、y、z,满足试求z的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去.
(1)填写下表:
剪的次数 | 1 | 2 | 3 | 4 | 5 |
正方形个数 | 4 | 7 | 10 |
|
|
(2)如果剪了8次,共剪出 个小正方形.
(3)如果剪n次,共剪出 个小正方形.
(4)设最初正方形纸片为1,则剪n次后,最小正方形的边长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)操究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD
①求∠EAF的度数;
②DE与EF相等吗?请说明理由
(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:
①∠EAF的度数
②线段AE,ED,DB之间的数量关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们都知道表示5与(-2)之差的绝对值,也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:
(1) 求= ;
(2) 使得=3成立的数是 ;
(3) 由以上探索猜想,对于任何有理数x,则最小值是 ;
(4)由以上探索猜想,使得的成立的整数x是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(2)如图②,若∠CAB=60°,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H.下列说法: ;②点F是GB的中点; ; ,其中正确的结论的序号是_____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,AB=AC,D是BC边上任意一点,以点A为中心,取旋转角等于∠BAC,把△ABD绕点A逆时针旋转得到△ACM.
(1)如图1,若∠BAC=50°,则∠BCM= ;
(2)如图2,在BC上取点E,使∠DAE=∠BAC,求证:DE<BD+EC;
(3)如图3,在(2)的条件下,若∠BAC=90°,BD=1,EC=2,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, , ,将绕点沿逆时针方向旋转得到.
(1)线段的长是 , 的度数是 ;
(2)连结,求证:四边形是平行四边形;
(3)求四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com