精英家教网 > 初中数学 > 题目详情
(2009•乐山)如果实数k,b满足kb<0且不等式kx<b的解集是x>,那么函数y=kx+b的图象只可能是( )
A.
B.
C.
D.
【答案】分析:先根据不等式kx<b的解集是x>判断出k、b的符号,再根据一次函数图象的性质即可解答.
解答:解:∵不等式kx<b的解集是x>
∴k<0,
∵kb<0,
∴b>0,
∴函数y=kx+b的图象过一、二、四象限.
故选A.
点评:一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
练习册系列答案
相关习题

科目:初中数学 来源:2011年北京市解密预测中考模拟试卷05(解析版) 题型:解答题

(2009•乐山)如图,一次函数y=-x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练8:二次函数(解析版) 题型:解答题

(2009•乐山)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练6:函数、一次函数(解析版) 题型:解答题

(2009•乐山)如图,一次函数y=-x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市南三县初中毕业生学业诊断性考试数学试卷(解析版) 题型:解答题

(2009•乐山)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:2009年四川省乐山市中考数学试卷(解析版) 题型:解答题

(2009•乐山)如图,一次函数y=-x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.

查看答案和解析>>

同步练习册答案