精英家教网 > 初中数学 > 题目详情

如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.
求证:∠B=∠E.

证明:∵四边形ABCD是等腰梯形,
∴∠B+∠ADC=180°,
∵∠ADC+∠CDE=180°,
∴∠B=∠CDE,
∵CE=CD,
∴△CDE是等腰三角形,
∴∠CDE=∠E,
∴∠B=∠E.
分析:先根据等腰梯形的性质得出∠B+∠ADC=180°,再根据两角互补的性质得出∠B=∠CDE,再根据CE=CD即可得出∠CDE=∠E,进而得出结论.
点评:本题考查的是等腰三角形的判定与性质及等腰梯形的性质,熟知等腰梯形的两底角相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求证:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•昌平区二模)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求证:AB=AD;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,对角线BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度数; 
(2)求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延长BC到E,使CE=AD.
(1)求证:BD=DE;
(2)当DC=2时,求梯形面积.

查看答案和解析>>

同步练习册答案