【题目】某公司共有50名员工,为庆祝“五一”国际劳动节,公司将组织员工参加“海南双飞五日游”活动,旅行社的收费标准是每人2500元,公司提供下列两种方案供员工选择参与:
方案一:要参加旅游活动者,对于2500元的旅游费,员工个人支付500元,其余2000元由公司支付;
方案二:不参加旅游者,不必交费,每人还能领取公司发放的500元节日费.
(1)如果公司有30人参加旅游,其余20人不参加,问公司总共需支付多少元?
(2)如果公司共支付5.5万元,问有多少名员工参加旅游活动?
科目:初中数学 来源: 题型:
【题目】如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.
(1)求y与x的函数关系式;
(2)写出其二次项、一次项、常数项;
(3)写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半,这样的图形有( ).
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“367人中有2人同月同日生”为必然事件
B.检测某批次灯泡的使用寿命,适宜用全面调查
C.可能性是1%的事件在一次试验中一定不会发生
D.数据3,5,4,1,﹣2的中位数是4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,适宜采用普查方式的是( )
A.调查银川市市民垃圾分类的情况B.对市场上的冰淇淋质量的调查
C.对乘坐某次航班的乘客进行安全检查D.对全国中学生心理健康现状的调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是O的切线;
(2)求证: ;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=.
(1)直接写出点A、B、C的坐标;
(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;
(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com