精英家教网 > 初中数学 > 题目详情

如图,已知正方形DEFG在直角三角形ABC内,其中G、D分别为AC、AB上,EF在斜边BC上.
试证明:EF2=BE•FC.

证明:∵四边形DEFG是正方形,
∴∠DEF=∠EFG=90°,
∴∠CFG=∠BDE=90°,
又∵∠C+∠B=90°,∠C+∠FGC=90°,
∴∠B=∠FGC,
∴△CFG∽△DEB,
=
∵DE=FG=EF,
∴EF2=BE•FC.
分析:根据已知可得出△CFG∽△DEB,从而得出=,再利用正方形的性质得出即可.
点评:此题主要考查了正方形的性质以及相似三角形的判定,利用已知得出△CFG∽△DEB是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE'的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•惠山区一模)阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知正方形AOBC的边长为3,A、B两点分别在y轴和x轴的正半轴上,以D(0,1)为旋转中心,将DB逆时针旋转90°,得到线段DE,抛物线以点E为顶点,且经过点A.

(1)求抛物线解析式并判断点B是否在抛物线上;
(2)如图②,判断直线AE与正方形AOBC的外接圆的位置关系,并说明理由;
(3)若在抛物线上有点P,在抛物线的对称轴上有点Q,使得以O、B、P、Q为顶点的四边形是平行四边形,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD中,点E在边AB上,AE=3,BE=2.把线段DE绕点D旋转,使点E落在直线BC上的点F处,则F、C两点的距离为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长是2,E是DC上一点,△ADE经顺时针旋转后与△ABF重合.
(1)指出旋转的中心和旋转的角度;
(2)如果连结EF,那么△AEF是怎样的三角形?请说明理由.
(3)已知点G在BC上,且∠GAE=45°.
①试说明GE=DE+BG.
②若E是DC的中点,求BG的长.

查看答案和解析>>

同步练习册答案