精英家教网 > 初中数学 > 题目详情
(2001•湖州)如图,已知两圆相交于CD两点,AB为两圆的外公切线,A、B为切点,CD的延长线交AB于M,若MD=3,CD=9,则AB的长等于   
【答案】分析:根据切割线定理得AM2=MD•MC=36,BM2=MD•MC,从而可求得AM=BM=6,即得到了AB的长.
解答:解:∵AM2=MD•MC=36,BM2=MD•MC,MD=3,CD=9;
∴AM=BM=6,
∴AB=12.
点评:此题主要是运用切割线定理进行计算.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《锐角三角函数》(03)(解析版) 题型:解答题

(2001•湖州)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α.
(1)试写出α的四个三角函数值;
(2)若∠B=α,求BD的长?

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2001•湖州)如图,已知E是平行四边形ABCD的边BC上的一点,F是BC延长线上一点,且BE=CF,BD与AE相交于点G.
求证:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

查看答案和解析>>

科目:初中数学 来源:2001年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2001•湖州)如图,已知E是平行四边形ABCD的边BC上的一点,F是BC延长线上一点,且BE=CF,BD与AE相交于点G.
求证:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

查看答案和解析>>

科目:初中数学 来源:2001年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2001•湖州)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α.
(1)试写出α的四个三角函数值;
(2)若∠B=α,求BD的长?

查看答案和解析>>

科目:初中数学 来源:2001年浙江省湖州市中考数学试卷(解析版) 题型:填空题

(2001•湖州)如图,已知ABCD是圆的内接四边形,对角线AC和BD相交于E,BC=CD=4,AE=6,如果线段BE和DE的长都是整数,则BD的长等于   

查看答案和解析>>

同步练习册答案