精英家教网 > 初中数学 > 题目详情

直角梯形ABCD中,AD∥BC,AB⊥BC,AB=10数学公式,AD=5,BC=15,分别以点C、D为圆心,CB、DA的长为半径作圆,则两圆的位置关系是


  1. A.
    外切
  2. B.
    内切
  3. C.
    相交
  4. D.
    外离
A
分析:首先过点D作DE⊥BC于E,易证得四边形ABED是矩形,然后由勾股定理,求得CD的长,再根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答:过点D作DE⊥BC于E,
∵AD∥BC,AB⊥BC,
∴AB∥DE,
∴四边形ABED是矩形,
∴DE=AB=10,BE=AD=5,∠DEC=90°,
∴EC=BA-BE=15-5=10,
∴CD==20,
∵AD+BC=20,
∴两圆的位置关系是外切.
故选A.
点评:此题考查了圆与圆的位置关系,梯形的性质,矩形的判定与性质,以及勾股定理的应用等知识.此题难度适中,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在直角梯形ABCD中,底AD=6cm,BC=11cm,腰CD=12cm,则这个直角梯形的周长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=1,BC=8,AB=6,点P在高AB上滑动,当AP长为
 
时,△DAP与△PBC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,AD∥BC,∠A=∠B=90°,E是AB的中点,连接DE、CE,AD+BC=CD,以精英家教网下结论:
(1)∠CED=90°;
(2)DE平分∠ADC;
(3)以AB为直径的圆与CD相切;
(4)以CD为直径的圆与AB相切;
(5)△CDE的面积等于梯形ABCD面积的一半.
其中正确结论的个数为(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作精英家教网EF∥AB,交AD于点E,CF=4cm.
(1)求证:四边形ABFE是等腰梯形;
(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在直角梯形ABCD中,底AD=6,BC=11,腰CD=13,则周长=
42

查看答案和解析>>

同步练习册答案