精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知抛物线y=-x2+bx+c经过点A(-1,0)和C(0,4).
(1)求这条抛物线的解析式;
(2)直线y=x+1与抛物线相交于A、D两点,点P是抛物线上一个动点,点P的横坐标是m,且-1<m<3,设△ADP的面积为S,求S的最大值及对应的m值;
(3)点M是直线AD上一动点,直接写出使△ACM为等腰三角形的点M的坐标.
分析:(1)利用待定系数法将A(-1,0)和C(0,4)代入y=-x2+bx+c,求出即可;
(2)首先求出两函数的交点坐标,再利用函数图象上点的性质得出PQ=(-m2+3m+4)-(m+1)=-m2+2m+3,进而求出
S△ADP=S△APQ+S△DPQ=-2m2+4m+6,再利用二次函数最值求法得出即可;
(3)根据平面内两点之间的距离公式以及点M在函数图象上的性质分别分析得出即可.
解答:解:(1)A(-1,0)和C(0,4)代入y=-x2+bx+c,
-1-b+c=0
c=4

解得
b=3
c=4

∴此抛物线解析式为:y=-x2+3x+4.

(2)由题意得:
y=x+1
y=-x2+3x+4
精英家教网
解得:
x1=-1
y1=0
x2=3
y2=4 

∴点D的坐标为(3,4),
过点P作PQ∥y轴,交直线AD与点Q,
∵点P的横坐标是m,
又点P在抛物线y=-x2+3x+4
∴P的纵坐标是-m2+3m+4,点Q的横坐标也是m,
∵点Q在直线y=x+1上,
∴Q的纵坐标是m+1,
∴PQ=(-m2+3m+4)-(m+1)=-m2+2m+3,
S△ADP=S△APQ+S△DPQ
=
1
2
(-m2+2m+3)[m-(-1)]+
1
2
(-m2+2m+3)(3-m)

=
1
2
(-m2+2m+3)×4

=-2m2+4m+6,
=-2(m-1)2+8,
当m=1,△ADP的面积S的最大值为8.

(3)M1(
34
2
-1,
34
2
),M2(-
34
2
-1,-
34
2
),M3(4,5),M4(
7
10
17
10
)
点评:此题主要考查了待定系数法求二次函数解析式以及二次函数最值求法和平面内两点之间的距离求法等知识,二次函数这部分经常利用数形结合以及分类讨论思想相结合,综合性较强注意不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案