精英家教网 > 初中数学 > 题目详情

如图,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,则△ABC与△AEG的面积之间的关系为


  1. A.
    S△ABC≥S△AEG
  2. B.
    S△ABC≤S△AEG
  3. C.
    S△ABC=S△AEG
  4. D.
    无法确定
C
分析:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,根据正方形性质得出∠BAE=∠CAG=90°,AB=AE,AC=AG,求出∠NAG=∠MAC,证△ACM≌△AGN(,推出CM=GN,根据三角形的面积公式求出即可.
解答:△ABC与△AEG面积相等,理由是:
过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,
∵四边形ABDE和四边形ACFG都是正方形,
∴∠BAE=∠CAG=90°,AB=AE,AC=AG,
∵∠BAE+∠CAG+∠BAC+∠EAG=360°,
∴∠BAC+∠EAG=180°,
∵∠EAG+∠GAN=180°,
∴∠BAC=∠GAN,
在△ACM和△AGN中,

∴△ACM≌△AGN(AAS),
∴CM=GN,
∵S△ABC=AB•CM,S△AEG=AE•GN,
∴S△ABC=S△AEG
故选C.
点评:本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点的应用,关键是作辅助线后求出CM=GN.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC满足什么条件时,四边形ADFE是矩形;
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE
(1)求证:△ABC是等腰三角形;
(2)若E是AC的中点,求
BD
的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,以△ABC的边AB为直径作⊙O,BC与⊙O交于D,D是BC的中点,过D作DE⊥AC,交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BD=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•黔东南州)如图,以△ABC的边BC为直径作⊙O分别交AB,AC于点F.点E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求证:DM2=DH•DA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB为直径的⊙O交AC于点D,弦DE∥AB,∠C=∠BAF
(1)求证:BC为⊙O的切线;
(2)若⊙O的半径为5,AD=2
5
,求DE的长.

查看答案和解析>>

同步练习册答案