精英家教网 > 初中数学 > 题目详情
15.化简$\frac{2}{x+1}$-$\frac{x-2}{{x}^{2}-1}$的结果是$\frac{x}{{x}^{2}-1}$.

分析 原式两项通分并利用同分母分式的减法法则计算即可得到结果.

解答 解:原式=$\frac{2(x-1)}{(x+1)(x-1)}$-$\frac{x-2}{(x+1)(x-1)}$
=$\frac{2x-2-x+2}{(x+1)(x-1)}$
=$\frac{x}{{x}^{2}-1}$.
故答案为:$\frac{x}{{x}^{2}-1}$.

点评 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图,数轴上有A、B、C、D四点,根据图中各点的位置,判断与10-2$\sqrt{39}$最接近的点是(  )
A.AB.BC.CD.D

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为(  )
A.π-1B.2π-1C.$\frac{1}{2}$π-1D.$\frac{1}{2}$π-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t-5t2,小球运动中的最大高度是45米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.(1)∵∠A+∠B=180°(已知)
∴AD∥BC(同旁内角互补,两直线平行)
(2)∵∠A+∠D=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)
小结:判定两条直线平行的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,⊙O是△ABC的内切圆,点D、E、F为切点,点M为优弧DEF上任意一点,∠B=66°,∠C=37°,求∠M的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,直线y1=$\frac{1}{2}$x+1分别交x轴,y轴于点A,C,点P是直线AC与双曲线y2=$\frac{k}{x}$(x>0)在第一象限内的交点,PB⊥x轴于点B,△PAB的面积为4.
(1)求双曲线的解析式;
(2)根据图象直接写出y1<y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.
(1)若PB平分∠ABO,求证:AP=CD;
(2)若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

同步练习册答案