精英家教网 > 初中数学 > 题目详情

△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=


  1. A.
    110°
  2. B.
    120°
  3. C.
    130°
  4. D.
    140°
A
分析:由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.
解答:由已知,O到三角形三边距离相等,所以O是内心,
即三条角平分线交点,AO,BO,CO都是角平分线,
所以有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,
∠ABC+∠ACB=180-40=140
∠OBC+∠OCB=70
∠BOC=180-70=110°
故选A.
点评:此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,点G是重心,那么
s△ABGs△ABC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?为什么?
(3)△ABC进行怎样的变化才能使AC边上存在点O,使四边形AECF是正方形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC切于点E,且AB=BE.
(1)求证:AB是⊙O的切线;
(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交外角∠DCA的平分线于点F,连接AE、AF.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.探究:线段OE与OF的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案