精英家教网 > 初中数学 > 题目详情

当m=________时,一元二次方程x2-4x+m=0(m为常数)有两个相等的实数根.

4
分析:根据题意可知△=0,再根据△=b2-4ac,可得16-4×1m=0,解即可求m.
解答:∵x2-4x+m=0(m为常数)有两个相等的实数根,
∴△=0,
即16-4×1m=0,
解得m=4,
故答案是4.
点评:本题考查了根的判别式,解题的关键是注意方程有两个相等的实数根就表明△=0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

24、阅读材料,解答问题.
例.用图象法解一元二次不等式:x2-2x-3>0.
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.∴由此得抛物线y=x2-2x-3的大致图象如图所示.观察函数图象可知:当x<-1或x>3时,y>0.∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是
-1<x<3

(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0.(画出大致图象).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

20、阅读材料,解答问题.
利用图象法解一元二次不等式:x2-2x-3>0.
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是

(2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:
①当x
>1
>1
时,函数值随着x的增大而减小;
②关于x的一元二次不等式ax2=bx+c>0的解是
-1<x<3
-1<x<3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图所示),其中图象与横轴的正半轴交点为(2,0),由图象可知:
①当x
<-1
<-1
时,函数值随着x的增大而减小;
②关于x的一元二次不等式ax2+bx+c>0的解是
x>2或x<-4
x>2或x<-4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程x2-6x+c=0有两个实数根.
(1)求c的取值范围;
(2)当c取符合条件的最大整数时,若二次函数y=x2-6x+c与y=x2+mx-6的图象交于x轴上同一点,求m的值.

查看答案和解析>>

同步练习册答案