精英家教网 > 初中数学 > 题目详情

已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:
(1)△ABC≌△DCB;
(2)DE•DC=AE•BD.

证明:(1)∵四边形ABCD是等腰梯形,
∴AC=DB(等腰梯形的两条对角线相等),
∵AB=DC(已知),BC=CB(公共边),
∴△ABC≌△DCB(SSS);

(2)由(1)知,△ABC≌△DCB,
∴∠ACB=∠DBC,∠ABC=∠DCB(全等三角形的对应角相等);
∵AD∥BC(已知),
∴∠DAC=∠ACB(两直线平行,内错角相等),∠EAD=∠ABC(两直线平行,同位角相等);
又∵ED∥AC(已知),
∴∠EDA=∠DAC(两直线平行,内错角相等),
∴∠EDA=∠DBC,∠EAD=∠DCB(等量代换),
∴△ADE∽△CBD,
∴DE:BD=AE:CD(相似三角形的对应边成比例),
∴DE•DC=AE•BD.
分析:(1)利用全等三角形的判定定理SSS证明△ABC≌△DCB;
(2)利用(1)中的全等三角形的对应角相等、平行线的性质可以推知∠EDA=∠DBC,∠EAD=∠DCB,从而根据相似三角形的判定定理AA证得△ADE∽△CBD;最后利用相似三角形的对应边成比例求得DE•DC=AE•BD.
点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰梯形的性质.等腰梯形的两个腰相等、两条对角线相等.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案