精英家教网 > 初中数学 > 题目详情

如图,直线AC∥BD,连结AB,直线AC、BD把之间的平面分成①、②两个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角.

(1)当动点P落在第①部分时,试说明:∠APB=∠PAC+∠PBD;(提示:过点P作直线与AC平行)

(2)当动点P落在第②部分时,请画出相应的图形.试探究∠APB、∠PAC、∠PBD之间的数量关系,并说明理由.

 

【答案】

(1)作PQ∥AC,则 PQ∥AC∥BD,根据平行线的性质可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;(2)∠APB+∠APC+∠PBD=360°

【解析】

试题分析:(1)作PQ∥AC,则 PQ∥AC∥BD,根据平行线的性质可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;

(2)根据平行线的性质可得∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,即可得到结果.

(1)作PQ∥AC,则 PQ∥AC∥BD

∴∠APQ﹦∠CAP,∠BPQ﹦∠DPB

∴∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD

(2)∠APB+∠APC+∠PBD=360°

∵PQ∥AC∥BD 

∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°

∴∠APB+∠APC+∠PBD=360°.

考点:平行线的性质

点评:解题的关键是读懂题意及图形,正确作出辅助线,同时熟练掌握两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、利用平行线的性质探究:
如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图<1>,过点P作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:
(1)当动点P落在第②部分时,在图<2>中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;
(2)当动点P落在第③部分时,在图<3>、图<4>中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.

(1)当动点P落在第②部分时
∠APB=∠PAC+∠PBD

(2)当动点P落在第③部分时(如图<3>)
∠PBD=∠APB+∠PAC

当动点P落在第③部分时(如图<4>)
∠PAC=∠PBD+∠APB

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示:有公共端点的两条重合的射线所组成的角是0°)
(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由);
(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以说明.

查看答案和解析>>

同步练习册答案