精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.
(1)∵线段OP绕点O按逆时针方向旋转90°得到线段OM
∴∠POM=90°,OP=OM
过点P(m,-1)作PQ⊥x轴于Q,过点M作MN⊥y轴于N,
∵∠POQ+∠MOQ=90°
∠MON+∠MOQ=90°
∴∠MON=∠POQ
∴∠ONM=∠OQP=90°
∴△MON≌△OPQ
∴MN=PQ=1,ON=OQ=m
∴M(1,m)
∵m=1
∴M(1,1)
∵点M是抛物线y=a(x-1)2+1
∵抛物线经过点(2,2)
∴a=1
∴y=(x-1)2+1
∴此抛物线开口向上,对称轴为x=1
∴当x=0时,y=2,
当x=1时,y=1
∴y的取值范围为1≤y≤2.

(2)∵点M(1,m)是抛物线y=ax2+bx+c的顶点
∴可设抛物线为y=a(x-1)2+m
∵y=a(x-1)2+m=ax2-2ax+a+m
∴B(0,a+m)
又∵A(1,0)
∴直线AB的解析式为y=-(a+m)x+(a+m)
解方程组
y=ax2-2ax+a+m
y=-(a+m)x+(a+m)

得ax2+(m-a)x=0
∵直线AB与抛物线y=ax2+bx+c有且只有一个交点,
∴△=(m-a)2=0
∴m=a
∴B(0,2m).
在Rt△ONM中,由勾股定理得
OM2=MN2+ON2=1+m2
∴BM=OM
∴△BOM是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<
5
+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“假日旅乐园”中一种新型水上滑梯如图,其中线段PA表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道AB可以看作反比例函数图象的一部分,滑道BCD可以看作是二次函数图象的一部分,两滑道的连接点B为抛物线BCD的顶点,且点B到水面的距离BE=2m,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离CG=
3
2
m,与点B的水平距离CF=2m.
(1)求反比例函数的解析式及其自变量的取值范围.
(2)求二次函数的解析式及其自变量的取值范围.
(3)小明从点B滑水面上点D处时,试求他所滑过的水平距离d.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(0,1)、D(4,3),P是以AD为对角线的矩形ABDC内部(不在各边上)的一个动点,点C在y轴上,抛物线y=ax2+bx+1以P为顶点.
(1)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由.
(2)设抛物线y=ax2+bx+1与x轴有交点F、E(F在E的左侧),△EAO与△FAO的面积之差为3,且这条抛物线与线段AD有一个交点的横坐标为
7
2
,这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题的图形仅供分析参考用)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过点A(0,4)、B(2,4),它的最高点纵坐标为
14
3
,点P是第一象限抛物线上一点且PA=PO,过点P的直线分别交射线AB、x正半轴于C、D.设AC=m,OD=n.
(1)求此抛物线的解析式;
(2)求点P的坐标及n关于m的函数关系式;
(3)连接OC交AP于点E,如果以A、C、E为顶点的三角形与△ODP相似,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,将抛物线y=2x2沿y轴向上平移1个单位,再沿x轴向右平移两个单位,平移后抛物线的顶点坐标记作A,直线x=3与平移后的抛物线相交于B,与直线OA相交于C.
(1)抛物线解析式;
(2)求△ABC面积;
(3)点P在平移后抛物线的对称轴上,如果△ABP与△ABC相似,求所有满足条件的P点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为-3,若x1,x2是关于方程x2+(m+1)x+m2-12=0(其中m<0)的两个根,且x12+x22=10.
(1)求A、B两点的坐标;
(2)求抛物线的解析式及点C的坐标;
(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACBM的面积的2倍?若存在,求出所有符合条件点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场试销一种成本为每件60元的服装,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,平面直角坐标系上有A(a,0)、B(0,-b)、C(b,0)三点,且a≥b>0,抛物线y=(x-2)(x-m)-(n-2)(n-m).(m,n为常数,且m+2≥2n>0),经过点A和点C,顶点为P
(1)当m,n满足什么关系时,S△AOB最大;
(3)如图,当△ACP为直角三角形时,判断以下命题是否正确:“直角三角形DEF的三个顶点都在这条抛物线上,且DFx轴,那么△ACP与△DEF斜边上的高相等”,如果正确请予以证明,不正确请举出反例.

查看答案和解析>>

同步练习册答案