【题目】某公司购进一种化工原料若干千克,价格为每千克30元,物价部门规定其销售单价每千克不高于60元且不低于30元,经市场调查发现,日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80,当x=50时,y=100.
(1)求y与x的函数解析式;
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数解析式;
(3)求当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
【答案】(1)y=﹣2x+200(30≤x≤60);(2)w=﹣2x2+260x﹣6000;(3)当销售单价为60元时,该公司日获利最大,最大利润是2400元.
【解析】
试题分析:(1)根据日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80,当x=50时,y=100,可以求得y与x的函数解析式;
(2)根据公司购进一种化工原料若干千克,价格为每千克30元,物价部门规定其销售单价每千克不高于60元且不低于30元,和第一问中求得的y与x的函数解析式,可以求得该公司销售该原料日获利w(元)与销售单价x(元)之间的函数解析式;
(3)将第(2)问中的函数解析式化为顶点式,然后根据二次项系数和对称轴和x的取值范围可以确定当销售单价为多少元时,该公司日获利最大,最大利润是多少元.
解;(1)由题意可得,设y与x的函数解析式是:y=kx+b,
∵当x=60时,y=80,当x=50时,y=100,
∴,
解得k=﹣2,b=200.
即y与x的函数解析式是:y=﹣2x+200(30≤x≤60);
(2)由题意可得,
w=(x﹣30)(﹣2x+200)=﹣2x2+260x﹣6000,
即该公司销售该原料日获利w(元)与销售单价x(元)之间的函数解析式是:w=﹣2x2+260x﹣6000;
(3)∵w=﹣2x2+260x﹣6000
∴w=﹣2(x﹣65)2+2450
∴当x<65时,y随x的增大而增大,
∵30≤x≤60,
∴当x=60时,w取得最大值,此时w=﹣2(60﹣65)2+2450=2400(元),
即当销售单价为60元时,该公司日获利最大,最大利润是2400元.
科目:初中数学 来源: 题型:
【题目】计算下列各题:
(1)(+45)+(﹣92)+35+(﹣8);
(2);
(3)﹣24+|4﹣6|﹣3÷(﹣1)2014;
(4)化简:3ab﹣a2﹣2ba﹣3a2;
(5)先化简后求值:,其中.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列长度的三条线段中,能组成三角形的是( )
A. 3cm、4cm、8cm B. 3cm、5cm、8cm C. 5cm、6cm、10cm D. 5cm、6cm、11cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,坐标平面上,△ABC≌△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC,若A、B、C的坐标分别为(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),D、E两点在y轴上,则F点到y轴的距离为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.
(1)求购买该品牌一个台灯、一个手电筒各需要多少元?
(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满.
(1)若旅游团一天共花去住宿费2140元,那么三人间客房和两人间客房各租住了多少间?
(2)若旅游团一天共花去住宿费m(元),住在三人间的共有n(人),求m与n的函数关式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com